Latón
Latón es el término genérico para una variedad de aleaciones de cobre y zinc. El latón se puede alear con zinc en diferentes proporciones, lo que da como resultado un material de diferentes propiedades mecánicas, anticorrosivas y térmicas. Cantidades mayores de zinc proporcionan al material una resistencia y ductilidad mejoradas. Los latón con un contenido de cobre superior al 63% son los más dúctiles de cualquier aleación de cobre y se moldean mediante complejas operaciones de conformado en frío. El latón tiene una mayor maleabilidad que el bronce o el zinc. El punto de fusión relativamente bajo del latón y su fluidez lo convierten en un material relativamente fácil de fundir. El latón puede variar en el color de la superficie de rojo a amarillo a dorado a plateado, dependiendo del contenido de zinc. Algunos de los usos comunes de las aleaciones de latón incluyen bisutería, cerraduras, bisagras, engranajes, cojinetes, acoplamientos de mangueras, carcasas de municiones, radiadores de automóviles, instrumentos musicales, envases electrónicos y monedas. El latón y el bronce son materiales de ingeniería comunes en la arquitectura moderna y se utilizan principalmente para techos y revestimientos de fachadas debido a su apariencia visual.
Por ejemplo, la aleación de latón del cartucho UNS C26000 (70/30) es de la serie de latón amarillo, que tiene la mayor ductilidad. Los latones de cartucho se forman en su mayoría en frío y también se pueden mecanizar fácilmente, lo cual es necesario para fabricar cartuchos. Se puede usar para núcleos y tanques de radiadores, carcasas de linternas, accesorios de lámparas, sujetadores, cerraduras, bisagras, componentes de municiones o accesorios de plomería.
Aceros
Los aceros son aleaciones de hierro y carbono que pueden contener concentraciones apreciables de otros elementos de aleación. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor ductilidad. Debido a su muy alta resistencia, pero aún una dureza sustancial, y su capacidad para ser alterado en gran medida por el tratamiento térmico, el acero es una de las aleaciones ferrosas más útiles y comunes en el uso moderno. Existen miles de aleaciones que tienen diferentes composiciones y / o tratamientos térmicos. Las propiedades mecánicas son sensibles al contenido de carbono, que normalmente es inferior al 1,0% en peso. Según la clasificación AISI, el acero al carbono se divide en cuatro clases según el contenido de carbono.
Tipos de aceros: clasificación basada en la composición
-
Acero. Los aceros son aleaciones de hierro y carbono que pueden contener concentraciones apreciables de otros elementos de aleación. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. Debido a su muy alta resistencia, pero aún sustancial dureza, y su capacidad de ser alterado en gran medida por el tratamiento térmico, el acero es una de las aleaciones ferrosas más útiles y comunes en el uso moderno. Existen miles de aleaciones que tienen diferentes composiciones y / o tratamientos térmicos. Las propiedades mecánicas son sensibles al contenido de carbono, que normalmente es inferior al 1,0% en peso. Según la clasificación AISI, el acero al carbono se divide en cuatro clases según el contenido de carbono:
- Aceros bajos en carbono. El acero con bajo contenido de carbono, también conocido como acero dulce, es ahora la forma más común de acero porque su precio es relativamente bajo y proporciona propiedades de material que son aceptables para muchas aplicaciones. El acero con bajo contenido de carbono contiene aproximadamente entre un 0,05 y un 0,25% de carbono, lo que lo hace maleable y dúctil. El acero dulce tiene una resistencia a la tracción relativamente baja, pero es barato y fácil de formar; la dureza de la superficie se puede aumentar mediante la carburación.
- Aceros Medio Carbono. El acero con contenido medio de carbono tiene aproximadamente un 0,3–0,6% de contenido de carbono. Equilibra la ductilidad y la fuerza y tiene buena resistencia al desgaste. Este grado de acero se utiliza principalmente en la producción de componentes de máquinas, ejes, ejes, engranajes, cigüeñales, acoplamientos y forjas, y también podría utilizarse en rieles y ruedas de ferrocarril.
- Aceros con alto contenido de carbono. El acero con alto contenido de carbono tiene aproximadamente un 0,60 a un 1,00% de contenido de carbono. La dureza es más alta que los otros grados pero la ductilidad disminuye. Los aceros con alto contenido de carbono se pueden utilizar para resortes, cables, martillos, destornilladores y llaves.
- Aceros con alto contenido de carbono. El acero con alto contenido de carbono tiene aproximadamente un 1,25% a un 2,0% de contenido de carbono. Aceros que pueden ser templados a gran dureza. Este grado de acero podría usarse para productos de acero duro, como resortes de camiones, herramientas de corte de metal y otros propósitos especiales como cuchillos, ejes o punzones (de uso no industrial). La mayoría de los aceros con más del 2,5% de contenido de carbono se fabrican mediante pulvimetalurgia.
- Aceros Aleados. El acero es una aleación de hierro y carbono, pero el término acero de aleación generalmente solo se refiere a aceros que contienen otros elementos, como vanadio, molibdeno o cobalto, en cantidades suficientes para alterar las propiedades del acero base. En general, el acero aleado es acero que se alea con una variedad de elementos en cantidades totales entre 1.0% y 50% en peso para mejorar sus propiedades mecánicas. Los aceros aleados se dividen en dos grupos:
- Aceros de baja aleación
- Aceros de alta aleación
- Acero inoxidable. Los aceros inoxidables se definen como aceros bajos en carbono con al menos un 10% de cromo con o sin otros elementos de aleación. Su fuerza y resistencia a la corrosión a menudo lo convierten en el material de elección en equipos de transporte y procesamiento, piezas de motores y armas de fuego. El cromo aumenta la dureza, la fuerza y la resistencia a la corrosión. El níquel brinda beneficios similares pero agrega dureza sin sacrificar la ductilidad y tenacidad. También reduce la expansión térmica para una mejor estabilidad dimensional.
Aceros inoxidables
En metalurgia, el acero inoxidable es una aleación de acero con al menos un 10,5% de cromo con o sin otros elementos de aleación y un máximo de 1,2% de carbono en masa. Los aceros inoxidables, también conocidos como aceros inox o inox de francés inoxidables (inoxidables), son aleaciones de acero muy conocidas por su resistencia a la corrosión, que aumenta al aumentar el contenido de cromo. La resistencia a la corrosión también se puede mejorar mediante la adición de níquel y molibdeno. La resistencia de estas aleaciones metálicas a los efectos químicos de los agentes corrosivos se basa en la pasivación. Para que se produzca la pasivación y se mantenga estable, la aleación Fe-Cr debe tener un contenido mínimo de cromo de aproximadamente el 10,5% en peso, por encima del cual puede ocurrir la pasividad y por debajo del cual es imposible. El cromo se puede utilizar como elemento de endurecimiento y se utiliza con frecuencia con un elemento de endurecimiento como el níquel para producir propiedades mecánicas superiores.
Usos de los aceros inoxidables – Aplicaciones
La fuerza y la resistencia a la corrosión del acero inoxidable a menudo lo convierten en el material de elección en equipos de transporte y procesamiento, piezas de motores y armas de fuego. La mayoría de las aplicaciones estructurales se producen en las industrias de la ingeniería química y energética, que representan más de la tercera parte del mercado de productos de acero inoxidable. La amplia variedad de aplicaciones incluye recipientes de reactores nucleares, intercambiadores de calor. El cuerpo de la vasija del reactor está construido con acero al carbono de baja aleación de alta calidad, pero todas las superficies que entran en contacto con el refrigerante del reactor (altamente corrosivo debido a la presencia de ácido bórico) están revestidas con un mínimo de aproximadamente 3 a 10 mm de acero inoxidable austenítico para minimizar la corrosión.
El acero inoxidable se puede enrollar en láminas, placas, barras, alambres y tubos. Los aceros inoxidables no necesitan ser pintados ni revestidos, lo que los hace adecuados para su uso en aplicaciones donde se requiere limpieza: en utensilios de cocina, cubiertos e instrumental quirúrgico.
Tipos de aceros inoxidables
El acero inoxidable es un término genérico para una gran familia de aleaciones resistentes a la corrosión que contienen al menos un 10,5% de cromo y pueden contener otros elementos de aleación. Existen numerosos grados de acero inoxidable con diferentes contenidos de cromo y molibdeno y con una estructura cristalográfica variable para adaptarse al medio ambiente que debe soportar la aleación. Los aceros inoxidables se pueden dividir en cinco categorías:
- Aceros inoxidables ferríticos. En los aceros inoxidables ferríticos, el carbono se mantiene en niveles bajos (C <0,08%) y el contenido de cromo puede oscilar entre el 10,50 y el 30,00%. Por lo general, su uso está limitado a secciones relativamente delgadas debido a la falta de tenacidad en las soldaduras. Además, tienen una resistencia a altas temperaturas relativamente pobre. Los aceros ferríticos se eligen por su resistencia al agrietamiento por corrosión bajo tensión, lo que los convierte en una alternativa atractiva a los aceros inoxidables austeníticos en aplicaciones donde prevalece el SCC inducido por cloruros.
- Aceros inoxidables austeníticos. Los aceros inoxidables austeníticos contienen entre 16 y 25% de Cr y también pueden contener nitrógeno en solución, los cuales contribuyen a su relativamente alta resistencia a la corrosión. Los aceros inoxidables austeníticos tienen la mejor resistencia a la corrosión de todos los aceros inoxidables y tienen excelentes propiedades criogénicas y buena resistencia a altas temperaturas. El grado más conocido es el acero inoxidable AISI 304, que contiene metales de cromo (entre 15% y 20%) y níquel (entre 2% y 10,5%) como principales componentes distintos del hierro. El acero inoxidable 304 tiene una excelente resistencia a una amplia gama de entornos atmosféricos y muchos medios corrosivos. Estas aleaciones generalmente se caracterizan por ser dúctiles, soldables y endurecibles por conformado en frío.
- Aceros inoxidables martensíticos. Los aceros inoxidables martensíticos son similares a los aceros ferríticos en que se basan en cromo, pero tienen niveles de carbono más altos hasta el 1%. A veces se clasifican como aceros inoxidables martensíticos con bajo contenido de carbono y alto contenido de carbono. Tienen una resistencia a la corrosión moderada, pero se consideran duros, fuertes y ligeramente quebradizos. Son magnéticos y pueden probarse de forma no destructiva mediante el método de inspección por partículas magnéticas, a diferencia del acero inoxidable austenítico. Un acero inoxidable martensítico común es el AISI 440C, que contiene del 16 al 18% de cromo y del 0,95 al 1,2% de carbono. El acero inoxidable de grado 440C se utiliza en las siguientes aplicaciones: bloques de calibre, cubiertos, rodamientos de bolas y pistas, moldes y matrices, cuchillos.
- Aceros Inoxidables Dúplex. Los aceros inoxidables dúplex, como su nombre indica, son una combinación de dos de los principales tipos de aleaciones. Tienen una microestructura mixta de austenita y ferrita, el objetivo suele ser producir una mezcla 50/50, aunque en las aleaciones comerciales la proporción puede ser 40/60. Su resistencia a la corrosión es similar a la de sus homólogos austeníticos, pero su resistencia a la corrosión bajo tensión (especialmente al agrietamiento por corrosión bajo tensión por cloruro), resistencia a la tracción y límites elásticos (aproximadamente el doble del límite elástico de los aceros inoxidables austeníticos) son generalmente superiores a los de los aceros inoxidables austeníticos. Los grados. Superdúplex Los aceros tienen una mayor resistencia y resistencia a todas las formas de corrosión en comparación con los aceros austeníticos estándar. Los usos comunes son en aplicaciones marinas, plantas petroquímicas, plantas desalinizadoras, intercambiadores de calor e industria de fabricación de papel. Hoy en día, la industria del petróleo y el gas es el mayor usuario y ha impulsado grados más resistentes a la corrosión, lo que ha llevado al desarrollo de aceros superdúplex.
- Aceros inoxidables PH. Los aceros inoxidables PH (endurecimiento por precipitación) contienen alrededor de un 17% de cromo y un 4% de níquel. Estos aceros pueden desarrollar una resistencia muy alta mediante la adición de aluminio, titanio, niobio, vanadio y / o nitrógeno, que forman precipitados intermetálicos coherentes durante un proceso de tratamiento térmico denominado envejecimiento por calor. De todos los grados de acero inoxidable disponibles, generalmente ofrecen la mejor combinación de alta resistencia junto con excelente tenacidad y resistencia a la corrosión. Son tan resistentes a la corrosión como los austeníticos. Los usos comunes se encuentran en la industria aeroespacial y en algunas otras industrias de alta tecnología.
Propiedades del latón frente al acero y el acero inoxidable
Las propiedades de los materiales son propiedades intensivas, lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.
Densidad del latón frente al acero y acero inoxidable
La densidad del latón típico – UNS C26000 es 8,53 g/cm3.
La densidad del acero inoxidable típico es de 8,0 g/cm3 (acero 304).
La densidad del acero típico es de 8,05 g/cm3.
La densidad se define como la masa por unidad de volumen. Es una propiedad intensiva , que se define matemáticamente como masa dividida por volumen:
ρ = m / V
En palabras, la densidad (ρ) de una sustancia es la masa total (m) de esa sustancia dividida por el volumen total (V) ocupado por esa sustancia. La unidad estándar del SI es kilogramos por metro cúbico (kg/m3). La unidad de inglés estándar es libras de masa por pie cúbico (lbm/ft3).
Dado que la densidad (ρ) de una sustancia es la masa total (m) de esa sustancia dividida por el volumen total (V) ocupado por esa sustancia, es obvio que la densidad de una sustancia depende en gran medida de su masa atómica y también de la densidad del número atómico (N; átomos/cm3),
- Peso atómico. La masa atómica es transportada por el núcleo atómico, que ocupa sólo alrededor de 10-12 del volumen total del átomo o menos, pero contiene toda la carga positiva y al menos el 99,95% de la masa total del átomo. Por lo tanto, está determinado por el número de masa (número de protones y neutrones).
- Densidad del número atómico. La densidad del número atómico (N; átomos/cm3), que está asociada con los radios atómicos, es el número de átomos de un tipo dado por unidad de volumen (V; cm3) del material. La densidad del número atómico (N; átomos/cm3) de un material puro que tiene un peso atómico o molecular (M; gramos/mol) y la densidad del material (⍴; gramos/cm3) se calcula fácilmente a partir de la siguiente ecuación utilizando el número de Avogadro (NA = 6,022 × 1023 átomos o moléculas por mol):
- Estructura cristalina. La densidad de la sustancia cristalina se ve afectada significativamente por su estructura cristalina. La estructura de FCC, junto con su relativo hexagonal (hcp), tiene el factor de empaque más eficiente (74%). Los metales que contienen estructuras de FCC incluyen austenita, aluminio, cobre, plomo, plata, oro, níquel, platino y torio.
Propiedades mecánicas del latón frente al acero y acero inoxidable
Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.
Resistencia del latón frente al acero y acero inoxidable
En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.
Resistencia a la tracción
La máxima resistencia a la tracción del latón de cartucho: UNS C26000 es de aproximadamente 315 MPa.
La máxima resistencia a la tracción del acero inoxidable – tipo 304L es de 485 MPa.
La resistencia máxima a la tracción del acero con bajo contenido de carbono se encuentra entre 400 y 550 MPa.
La máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.
Límite de elasticidad
El límite elástico del latón de cartucho – UNS C26000 es de aproximadamente 95 MPa.
El límite elástico del acero inoxidable – tipo 304L es de 170 MPa.
El límite elástico del acero con bajo contenido de carbono es de 250 MPa.
El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez superado el límite elástico, una parte de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.
Módulo de Young
El módulo de Young del latón de cartucho – UNS C26000 es de aproximadamente 110 GPa.
El módulo de Young del acero inoxidable – tipo 304 y 304L es 193 GPa.
El módulo de Young del acero con bajo contenido de carbono es de 200 GPa.
El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.
Dureza del latón frente al acero y acero inoxidable
La dureza Brinell del latón de cartucho – UNS C26000 es de aproximadamente 100 MPa.
La dureza Brinell del acero inoxidable – tipo 304 es de aproximadamente 201 MPa.
La dureza Brinell del acero con bajo contenido de carbono es de aproximadamente 120 MPa.
La dureza Brinell del acero con alto contenido de carbono es de aproximadamente 200 MPa.
La prueba de dureza Rockwell es una de las pruebas de dureza por indentación más comunes, que se ha desarrollado para las pruebas de dureza. A diferencia de la prueba de Brinell, el probador Rockwell mide la profundidad de penetración de un penetrador bajo una carga grande (carga mayor) en comparación con la penetración realizada por una precarga (carga menor). La carga menor establece la posición cero. Se aplica la carga principal y luego se retira mientras se mantiene la carga menor. La diferencia entre la profundidad de penetración antes y después de la aplicación de la carga principal se utiliza para calcular el número de dureza Rockwell. Es decir, la profundidad de penetración y la dureza son inversamente proporcionales. La principal ventaja de la dureza Rockwell es su capacidad para mostrar los valores de dureza directamente. El resultado es un número adimensional anotado como HRA, HRB, HRC, etc., donde la última letra es la escala de Rockwell respectiva.
La prueba Rockwell C se realiza con un penetrador Brale ( cono de diamante de 120°) y una carga mayor de 150 kg.
Propiedades térmicas del latón frente al acero y el acero inoxidable
Las propiedades térmicas de los materiales se refieren a la respuesta de los materiales a los cambios de thermodynamics/thermodynamic-properties/what-is-temperature-physics/»>temperatura y a la aplicación de calor. A medida que un sólido absorbe thermodynamics/what-is-energy-physics/»>energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.
La capacidad calorífica , la expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.
Punto de fusión del latón frente al acero y acero inoxidable
El punto de fusión del latón del cartucho – UNS C26000 es de alrededor de 950°C.
El punto de fusión del acero inoxidable – acero tipo 304 es de alrededor de 1450°C.
El punto de fusión del acero con bajo contenido de carbono es de alrededor de 1450°C.
En general, la fusión es un cambio de fase de una sustancia de la fase sólida a la líquida. El punto de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El punto de fusión también define una condición en la que el sólido y el líquido pueden existir en equilibrio.
Conductividad térmica del latón frente al acero y acero inoxidable
La conductividad térmica del latón de cartucho – UNS C26000 es de 120 W/(mK).
La conductividad térmica del acero inoxidable – tipo 304 es de 20 W/(mK).
La conductividad térmica del acero típico es de 20 W/(mK).
Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada conductividad térmica, k (o λ), medida en W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por conducción . Tenga en cuenta que la ley de Fourier se aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.
La conductividad térmica de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:
La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir k = k (T). Se asocian definiciones similares con conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.
Esperamos que este artículo, Latón versus acero y acero inoxidable – Comparación – Pros y contras , lo ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.