En métallurgie, l’acier inoxydable est un alliage d’acier avec au moins 10,5 % de chrome avec ou sans autres éléments d’alliage et un maximum de 1,2 % de carbone en masse. Les aciers inoxydables, également appelés aciers inox ou inox du français inoxydable (inoxydable), sont des alliages d’acier, qui sont très connus pour leur résistance à la corrosion, qui augmente avec l’augmentation de la teneur en chrome. La résistance à la corrosion peut également être améliorée par des ajouts de nickel et de molybdène. La résistance de ces alliages métalliques aux effets chimiques des agents corrosifs repose sur la passivation. Pour que la passivation se produise et reste stable, l’ alliage Fe-Cr doit avoir une teneur minimale en chrome d’environ 10,5 % en poids, au-dessus duquel la passivité peut se produire et en-dessous duquel elle est impossible. Le chrome peut être utilisé comme élément de durcissement et est fréquemment utilisé avec un élément de durcissement tel que le nickel pour produire des propriétés mécaniques supérieures.
Agents d’alliage dans les alliages Fe-Cr
Le fer pur est trop mou pour être utilisé à des fins de structure, mais l’ajout de petites quantités d’autres éléments (carbone, manganèse ou silicium par exemple) augmente fortement sa résistance mécanique. Les alliages sont généralement plus résistants que les métaux purs, bien qu’ils offrent généralement une conductivité électrique et thermique réduite. La résistance est le critère le plus important par lequel de nombreux matériaux de structure sont jugés. Par conséquent, les alliages sont utilisés pour la construction mécanique. L’effet synergique des éléments d’alliage et du traitement thermique produit une grande variété de microstructures et de propriétés.
- Carbone. Le carbone est un élément non métallique, qui est un élément d’alliage important dans tous les matériaux à base de métaux ferreux. Le carbone est toujours présent dans les alliages métalliques, c’est-à-dire dans toutes les nuances d’acier inoxydable et les alliages résistants à la chaleur. Le carbone est un austénitisant très puissant et augmente la résistance de l’acier. En fait, c’est le principal élément durcissant et il est essentiel à la formation de la cémentite, Fe3C, perlite, sphéroïdite et martensite fer-carbone. L’ajout d’une petite quantité de carbone non métallique au fer échange sa grande ductilité contre une plus grande résistance. S’il est combiné avec du chrome en tant que constituant séparé (carbure de chrome), il peut avoir un effet néfaste sur la résistance à la corrosion en éliminant une partie du chrome de la solution solide dans l’alliage et, par conséquent, en réduisant la quantité de chrome disponible pour assurer résistance à la corrosion.
- Chrome. Le chrome augmente la dureté, la résistance et la résistance à la corrosion. L’effet de renforcement de la formation de carbures métalliques stables aux joints de grains et la forte augmentation de la résistance à la corrosion ont fait du chrome un matériau d’alliage important pour l’acier. La résistance de ces alliages métalliques aux effets chimiques des agents corrosifs repose sur la passivation. Pour que la passivation se produise et reste stable, l’alliage Fe-Cr doit avoir une teneur minimale en chrome d’environ 11 % en poids, au-dessus de laquelle la passivation peut se produire et en dessous de laquelle elle est impossible. Le chrome peut être utilisé comme élément de durcissement et est fréquemment utilisé avec un élément de durcissement tel que le nickel pour produire des propriétés mécaniques supérieures. À des températures plus élevées, le chrome contribue à une résistance accrue. Les aciers à outils rapides contiennent entre 3 et 5 % de chrome.
- Nickel. Le nickel est l’un des éléments d’alliage les plus courants. Environ 65 % de la production de nickel est utilisée dans les aciers inoxydables. Étant donné que le nickel ne forme aucun composé de carbure dans l’acier, il reste en solution dans la ferrite, renforçant et durcissant ainsi la phase de ferrite. Les aciers au nickel sont facilement traités thermiquement car le nickel réduit la vitesse de refroidissement critique. Les alliages à base de nickel (par exemple les alliages Fe-Cr-Ni(Mo)) présentent une excellente ductilité et ténacité, même à des niveaux de résistance élevés et ces propriétés sont conservées jusqu’à de basses températures. Le nickel réduit également la dilatation thermique pour une meilleure stabilité dimensionnelle. Le nickel est l’élément de base des superalliages, qui sont un groupe d’alliages de nickel, de fer-nickel et de cobalt utilisés dans les moteurs à réaction. Ces métaux ont une excellente résistance à la déformation par fluage thermique et conservent leur rigidité, leur résistance,
Alliage FeCrAl
Les alliages FeCrAl sont principalement constitués de fer, de chrome (20 à 30 %) et d’aluminium (4 à 7,5 %). Ces alliages sont connus sous la marque Kanthal, qui est une famille d’alliages fer-chrome-aluminium (FeCrAl) utilisés dans une large gamme d’applications de résistance et à haute température.
Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.
Nous espérons que cet article, Alliages Fe-Cr, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.