Facebook Instagram Youtube Twitter

Quelles sont les propriétés thermiques de l’acier inoxydable austénitique – Définition

Propriétés thermiques de l’acier inoxydable austénitique. Le point de fusion de l’acier inoxydable – l’acier de type 304 est d’environ 1450 °C. La conductivité thermique de l’acier inoxydable – type 304 est de 20 W/(mK).

acier inoxydable 304Les aciers inoxydables austénitiques contiennent entre 16 et 25 % de chrome et peuvent également contenir de l’azote en solution, ce qui contribue à leur résistance relativement élevée à la corrosion . Les aciers inoxydables austénitiques sont classés avec les désignations des séries AISI 200 ou 300; les nuances de la série 300 sont des alliages chrome-nickel, et la série 200 représente un ensemble de compositions dans lesquelles le manganèse et/ou l’azote remplacent une partie du nickel. Les aciers inoxydables austénitiques ont la meilleure résistance à la corrosion de tous les aciers inoxydables et ils ont d’excellentes propriétés cryogéniques et une bonne résistance à haute température. Ils possèdent un cube à faces centrées (fcc) microstructure non magnétique, et ils peuvent être facilement soudés. Cette structure cristalline austénitique est obtenue par des ajouts suffisants d’éléments stabilisateurs d’austénite nickel, manganèse et azote. L’acier inoxydable austénitique est la plus grande famille d’aciers inoxydables, représentant environ les deux tiers de toute la production d’acier inoxydable. Leur limite d’élasticité est faible (200 à 300 MPa), ce qui limite leur utilisation pour les composants structurels et autres éléments porteurs. Ils ne peuvent pas être durcis par traitement thermique mais ont la propriété utile de pouvoir être écrouis à des niveaux de résistance élevés tout en conservant un niveau utile de ductilité et de ténacité. Les aciers inoxydables duplex ont tendance à être préférés dans de telles situations en raison de leur résistance élevée et de leur résistance à la corrosion. La nuance la plus connue est l’acier inoxydable AISI 304, qui contient à la fois du chrome (entre 15 % et 20 %) et du nickel (entre 2 % et 10,5 %) comme principaux constituants non ferreux. L’acier inoxydable 304 a une excellente résistance à une large gamme d’environnements atmosphériques et à de nombreux milieux corrosifs. Ces alliages sont généralement caractérisés comme ductiles, soudables et durcissables par formage à froid.

Propriétés thermiques de l’acier inoxydable austénitique

Les propriétés thermiques des matériaux font référence à la réponse des matériaux aux changements de leur thermodynamics/thermodynamic-properties/what-is-temperature-physics/ »>température et à l’application de chaleur. Lorsqu’un solide absorbe de thermodynamics/what-is-energy-physics/ »>l’énergie sous forme de chaleur, sa température augmente et ses dimensions augmentent. Mais différents matériaux réagissent différemment à l’application de chaleur.

La capacité calorifiquela dilatation thermique et la conductivité thermique sont des propriétés qui sont souvent critiques dans l’utilisation pratique des solides.

Point de fusion des aciers inoxydables austénitiques

Le point de fusion de l’acier inoxydable – l’acier de type 304 est d’environ 1450 °C.

En général, la fusion est un changement de phase d’une substance de la phase solide à la phase liquide. Le point de fusion d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre.

Conductivité thermique des aciers inoxydables austénitiques

La conductivité thermique de l’acier inoxydable – type 304 est de 20 W/(mK).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gaz), par conséquent, elle est également définie pour les liquides et les gaz.

La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

 

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Acier inoxydable austénitique

Nous espérons que cet article, Propriétés thermiques de l’acier inoxydable austénitique, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.