Facebook Instagram Youtube Twitter

Quels sont les types d’aciers – Classification – Définition

Types d’aciers – Classification. Selon la classification AISI, l’acier au carbone est divisé en quatre classes en fonction de la teneur en carbone.

Diagramme de phase Fe-Fe3C
Dans la figure, il y a le diagramme de phase fer-carbure de fer (Fe-Fe3C). Le pourcentage de carbone présent et la température définissent la phase de l’alliage fer-carbone et donc ses caractéristiques physiques et ses propriétés mécaniques. Le pourcentage de carbone détermine le type d’alliage ferreux : fer, acier ou fonte. Source: wikipedia.org Läpple, Volker – Wärmebehandlung des Stahls Grundlagen. Licence: CC BY-SA 4.0

Les aciers sont des alliages fer-carbone qui peuvent contenir des concentrations appréciables d’autres éléments d’alliage. L’ajout d’une petite quantité de carbone non métallique au fer échange sa grande ductilité contre une plus grande résistance. En raison de sa très haute résistance, mais toujours d’une ténacité substantielle, et sa capacité à être fortement altérée par le traitement thermique, l’acier est l’un des alliages ferreux les plus utiles et les plus courants dans l’utilisation moderne. Il existe des milliers d’alliages qui ont des compositions et/ou des traitements thermiques différents. Les propriétés mécaniques sont sensibles à la teneur en carbone, qui est normalement inférieure à 1,0 % en poids. Selon la classification AISI, l’acier au carbone est divisé en quatre classes basées sur la teneur en carbone.

Types d’aciers

  • acier à faible teneur en carbone
    Les applications typiques de l’acier à faible teneur en carbone comprennent les composants de carrosserie automobile, les formes structurelles (par exemple, les poutres en I, les profilés en U et les cornières) et les tôles utilisées dans les pipelines et les bâtiments.

    Acier. Les aciers sont des alliages fer-carbone qui peuvent contenir des concentrations appréciables d’autres éléments d’alliage. L’ajout d’une petite quantité de carbone non métallique au fer échange sa grande ductilité contre une plus grande résistance. En raison de sa très haute résistance, mais toujours d’une ténacité substantielle, et de sa capacité à être fortement altérée par le traitement thermique, l’acier est l’un des alliages ferreux les plus utiles et les plus courants dans l’utilisation moderne. Il existe des milliers d’alliages qui ont des compositions et/ou des traitements thermiques différents. Les propriétés mécaniques sont sensibles à la teneur en carbone, qui est normalement inférieure à 1,0 % en poids. Selon la classification AISI, l’acier au carbone est divisé en quatre classes en fonction de la teneur en carbone :

    • Aciers bas carbone. L’acier à faible teneur en carbone, également connu sous le nom d’acier doux, est désormais la forme d’acier la plus courante car son prix est relativement bas alors qu’il offre des propriétés matérielles acceptables pour de nombreuses applications. L’acier à faible teneur en carbone contient environ 0,05 à 0,25 % de carbone, ce qui le rend malléable et ductile. L’acier doux a une résistance à la traction relativement faible, mais il est bon marché et facile à former; la dureté de surface peut être augmentée par carburation.
    • Acier à moyenne teneur en carbone
      L’acier à carbone moyen est principalement utilisé dans la production de composants de machines, d’arbres, d’essieux, d’engrenages, de vilebrequins, d’accouplements et de pièces forgées, pourrait également être utilisé dans les rails et les roues de chemin de fer et d’autres pièces de machines et composants structurels à haute résistance nécessitant une combinaison de haute résistance, résistance à l’usure et ténacité.

      Aciers moyennement carbonés. L’acier à moyenne teneur en carbone a une teneur en carbone d’environ 0,3 à 0,6 %. Équilibre la ductilité et la résistance et a une bonne résistance à l’usure. Cette nuance d’acier est principalement utilisée dans la production de composants de machines, d’arbres, d’essieux, d’engrenages, de vilebrequins, d’accouplements et de pièces forgées et pourrait également être utilisée dans les rails et les roues de chemin de fer.

    • Aciers à haute teneur en carbone. L’acier à haute teneur en carbone a une teneur en carbone d’environ 0,60 à 1,00 %. La dureté est plus élevée que les autres nuances mais la ductilité diminue. Les aciers à haute teneur en carbone pourraient être utilisés pour les ressorts, les câbles, les marteaux, les tournevis et les clés.
    • Aciers à très haute teneur en carbone. L’acier à très haute teneur en carbone a une teneur en carbone d’environ 1,25 à 2,0 %. Aciers pouvant être trempés à grande dureté. Cette nuance d’acier pourrait être utilisée pour les produits en acier dur, tels que les ressorts de camion, les outils de coupe de métal et d’autres usages spéciaux tels que les couteaux, les essieux ou les poinçons (à usage non industriel). La plupart des aciers contenant plus de 2,5 % de carbone sont fabriqués à l’aide de la métallurgie des poudres.
  • Aciers alliés. L’acier est un alliage de fer et de carbone, mais le terme acier allié ne fait généralement référence qu’aux aciers contenant d’autres éléments, tels que le vanadium, le molybdène ou le cobalt, en quantités suffisantes pour modifier les propriétés de l’acier de base. En général, l’acier allié est un acier qui est allié avec une variété d’éléments en quantités totales comprises entre 1,0 % et 50 % en poids pour améliorer ses propriétés mécaniques. Les aciers alliés sont répartis en deux groupes:
    • Aciers faiblement alliés.
    • Aciers fortement alliés.
  • Superalliages
    Aube de turbine à vapeur. Les superalliages (généralement des alliages austénitiques cubiques à faces centrées) à base de Co, Ni et Fe peuvent être conçus pour être hautement résistants au fluage et sont donc apparus comme un matériau idéal dans les environnements à haute température. Source wikipedia.org Licence: CC BY-SA 3.0

    Acier inoxydable. Les aciers inoxydables sont définis comme des aciers à faible teneur en carbone contenant au moins 10 % de chrome avec ou sans autres éléments d’alliage. La solidité et la résistance à la corrosion en font souvent le matériau de choix dans les équipements de transport et de traitement, les pièces de moteur et les armes à feu. Le chrome augmente la dureté, la résistance et la résistance à la corrosion. Le nickel offre des avantages similaires mais ajoute de la dureté sans sacrifier la ductilité et la ténacité. Il réduit également la dilatation thermique pour une meilleure stabilité dimensionnelle.

  • Superalliages.

Métaux ferreux spéciaux

  • Aciers à outils
  • Aciers rapides
  • Aciers résistants aux chocs
  • Argent Acier

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Aciers

Nous espérons que cet article, Types d’aciers – Classification, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.