Facebook Instagram Youtube Twitter

Latão vs Aço e Aço Inoxidável – Comparação – Prós e Contras

Latão é o termo genérico para uma variedade de ligas de cobre-zinco. Aços inoxidáveis ​​são ligas de aço muito conhecidas por sua resistência à corrosão.

Latão

latãoLatão é o termo genérico para uma variedade de ligas de cobre-zinco. O latão pode ser ligado ao zinco em diferentes proporções, o que resulta em um material com propriedades mecânicas, de corrosão e térmicas variadas. Maiores quantidades de zinco fornecem ao material maior resistência e ductilidade. Os latões com teor de cobre superior a 63% são os mais dúcteis de qualquer liga de cobre e são moldados por complexas operações de conformação a frio. O latão tem maior maleabilidade do que o bronze ou o zinco. O ponto de fusão relativamente baixo do latão e sua fluidez o tornam um material relativamente fácil de fundir. O latão pode variar na cor da superfície de vermelho a amarelo, de ouro a prata, dependendo do teor de zinco. Alguns dos usos comuns para ligas de latão incluem bijuterias, fechaduras, dobradiças, engrenagens, rolamentos, acoplamentos de mangueiras, cartuchos de munição, radiadores automotivos, instrumentos musicais, embalagens eletrônicas e moedas. Latão e bronze são materiais de engenharia comuns na arquitetura moderna e usados ​​principalmente para coberturas e revestimento de fachadas devido à sua aparência visual.

cartucho de liga de latãoPor exemplo, a liga de latão de cartucho UNS C26000 (70/30) é da série de latão amarelo, que possui a maior ductilidade. Os latões de cartucho são formados principalmente a frio e também podem ser facilmente usinados, o que é necessário na fabricação de caixas de cartucho. Ele pode ser usado para núcleos e tanques de radiadores, conchas de lanternas, luminárias, fixadores, fechaduras, dobradiças, componentes de munição ou acessórios de encanamento.

Aços

Os aços são ligas de ferro-carbono que podem conter concentrações apreciáveis ​​de outros elementos de liga. Adicionar uma pequena quantidade de carbono não metálico ao ferro  troca sua grande ductilidade pela maior ductilidade. Devido à sua resistência muito alta, mas ainda tenacidade substancial, e sua capacidade de ser bastante alterada por tratamento térmico, o aço é uma das ligas ferrosas mais úteis e comuns em uso moderno. Existem milhares de ligas que possuem diferentes composições e/ou tratamentos térmicos. As propriedades mecânicas são sensíveis ao teor de carbono, que normalmente é inferior a 1,0% em peso. De acordo com a classificação AISI, o aço carbono é dividido em quatro classes com base no teor de carbono.

Tipos de Aços – Classificação Baseada na Composição

  • aço de baixo carbono
    Aplicações típicas para aço de baixo carbono incluem componentes de carrocerias de automóveis, formas estruturais (por exemplo, vigas em I, canaletas e cantoneiras) e chapas usadas em tubulações e edifícios.

    Aço. Os aços são ligas de ferro-carbono que podem conter concentrações apreciáveis ​​de outros elementos de liga. Adicionar uma pequena quantidade de carbono não metálico ao ferro troca sua grande ductilidade por maior resistência. Devido à sua resistência muito alta, mas tenacidade ainda substancial, e sua capacidade de ser muito alterada pelo tratamento térmico, o aço é uma das ligas ferrosas mais úteis e comuns em uso moderno. Existem milhares de ligas que possuem diferentes composições e/ou tratamentos térmicos. As propriedades mecânicas são sensíveis ao teor de carbono, que normalmente é inferior a 1,0% em peso. De acordo com a classificação AISI, o aço carbono é dividido em quatro classes com base no teor de carbono:

    • Aços de Baixo Carbono. O aço de baixo teor de carbono, também conhecido como aço macio, é agora a forma mais comum de aço porque seu preço é relativamente baixo, ao mesmo tempo em que fornece propriedades de material aceitáveis ​​para muitas aplicações. O aço de baixo carbono contém aproximadamente 0,05–0,25% de carbono, tornando-o maleável e dúctil. O aço doce tem uma resistência à tração relativamente baixa, mas é barato e fácil de moldar; a dureza da superfície pode ser aumentada através da cementação.
    • Aços de Médio Carbono. O aço de médio carbono tem aproximadamente 0,3–0,6% de teor de carbono. Equilibra a ductilidade e resistência e tem boa resistência ao desgaste. Este tipo de aço é usado principalmente na produção de componentes de máquinas, eixos, eixos, engrenagens, virabrequins, acoplamentos e peças forjadas e também pode ser usado em trilhos e rodas ferroviárias.
    • Aços de alto carbono. O aço de alto carbono tem aproximadamente 0,60 a 1,00% de teor de carbono. A dureza é maior do que as outras classes, mas a ductilidade diminui. Aços de alto carbono podem ser usados ​​para molas, cabos de aço, martelos, chaves de fenda e chaves inglesas.
    • Aços de ultra-alto carbono. O aço de ultra-alto teor de carbono tem aproximadamente 1,25–2,0% de teor de carbono. Aços que podem ser temperados a grande dureza. Este tipo de aço pode ser usado para produtos de aço duro, como molas de caminhão, ferramentas de corte de metal e outros fins especiais, como facas, eixos ou punções (para fins não industriais). A maioria dos aços com mais de 2,5% de teor de carbono é feita usando metalurgia do pó.
  • Aços Liga. O aço é uma liga de ferro e carbono, mas o termo liga de aço geralmente se refere apenas a aços que contêm outros elementos – como vanádio, molibdênio ou cobalto – em quantidades suficientes para alterar as propriedades do aço base. Em geral, o aço-liga é o aço que é ligado com uma variedade de elementos em quantidades totais entre 1,0% e 50% em peso para melhorar suas propriedades mecânicas. As ligas de aço são divididas em dois grupos:
    • Aços de baixa liga.
    • Aços de alta liga.
  • Aço inoxidável. Os aços inoxidáveis ​​são definidos como aços de baixo teor de carbono com pelo menos 10% de cromo com ou sem outros elementos de liga. Força e resistência à corrosão muitas vezes o tornam o material de escolha em equipamentos de transporte e processamento, peças de motores e armas de fogo. O cromo aumenta a dureza, força e resistência à corrosão. O níquel oferece benefícios semelhantes, mas adiciona dureza sem sacrificar a ductilidade e a tenacidade. Também reduz a expansão térmica para melhor estabilidade dimensional.

Aços inoxidáveis

aço inoxidável 304Na metalurgia, o aço inoxidável é uma liga de aço com pelo menos 10,5% de cromo com ou sem outros elementos de liga e no máximo 1,2% de carbono em massa. Os aços inoxidáveis, também conhecidos como aços inox ou inox do francês inoxydable (inoxidáveis), são  ligas de aço, que são muito conhecidas por sua resistência à corrosão, que aumenta com o aumento do teor de cromo. A resistência à corrosão também pode ser aumentada por adições de níquel e molibdênio. A resistência dessas ligas metálicas aos efeitos químicos dos agentes corrosivos é baseada na passivação. Para que a passivação ocorra e permaneça estável, a liga Fe-Cr deve ter um teor mínimo de cromo de cerca de 10,5% em peso, acima do qual a passividade pode ocorrer e abaixo do qual é impossível. O cromo pode ser usado como um elemento de endurecimento e é freqüentemente usado com um elemento de endurecimento, como o níquel, para produzir propriedades mecânicas superiores.

Usos dos Aços Inoxidáveis ​​– Aplicações

Força e resistência à corrosão do aço inoxidável muitas vezes o tornam o material de escolha em equipamentos de transporte e processamento, peças de motores e armas de fogo. A maioria das aplicações estruturais ocorre nas indústrias química e de engenharia de energia, que respondem por mais de um terço do mercado de produtos de aço inoxidável. A ampla variedade de aplicações inclui vasos de reatores nucleares, trocadores de calor. O corpo do vaso do reator é construído em aço carbono de baixa liga de alta qualidade, mas todas as superfícies que entram em contato com o refrigerante do reator (altamente corrosivo devido à presença de ácido bórico) são revestidas com um mínimo de cerca de 3 a 10 mm de aço inoxidável austenítico para minimizar a corrosão.

O aço inoxidável pode ser laminado em chapas, chapas, barras, arames e tubos. Os aços inoxidáveis ​​não precisam ser pintados ou revestidos, o que os torna adequados para uso em aplicações onde a limpeza é necessária: em panelas, talheres e instrumentos cirúrgicos.

Tipos de Aços Inoxidáveis

Aço inoxidável é um termo genérico para uma grande família de ligas resistentes à corrosão contendo pelo menos 10,5% de cromo e pode conter outros elementos de liga. Existem vários graus de aço inoxidável com teores variados de cromo e molibdênio e com estrutura cristalográfica variável para se adequar ao ambiente que a liga deve suportar. Os aços inoxidáveis ​​podem ser divididos em cinco categorias:

  • Aços inoxidáveis ​​ferríticos. Nos aços inoxidáveis ​​ferríticos, o carbono é mantido em níveis baixos (C<0,08%) e o teor de cromo pode variar de 10,50 a 30,00%. Eles são geralmente limitados em uso a seções relativamente finas devido à falta de tenacidade nas soldas. Além disso, eles têm resistência a altas temperaturas relativamente fraca. Os aços ferríticos são escolhidos por sua resistência à corrosão sob tensão, o que os torna uma alternativa atraente aos aços inoxidáveis ​​austeníticos em aplicações onde a SCC induzida por cloreto é prevalente.
  • Aços inoxidáveis ​​austeníticos. Os aços inoxidáveis ​​austeníticos contêm entre 16 e 25% de Cr e também podem conter nitrogênio em solução, ambos os quais contribuem para sua resistência à corrosão relativamente alta. Os aços inoxidáveis ​​austeníticos têm a melhor resistência à corrosão de todos os aços inoxidáveis ​​e possuem excelentes propriedades criogênicas e boa resistência a altas temperaturas. O grau mais conhecido é o aço inoxidável AISI 304, que contém cromo (entre 15% e 20%) e níquel (entre 2% e 10,5%) metais como principais constituintes não ferrosos. O aço inoxidável 304 possui excelente resistência a uma ampla gama de ambientes atmosféricos e a muitos meios corrosivos. Essas ligas são geralmente caracterizadas como dúcteis, soldáveis ​​e endurecíveis por conformação a frio.
  • Aços inoxidáveis ​​martensíticos. Os aços inoxidáveis ​​martensíticos são semelhantes aos aços ferríticos por serem baseados em cromo, mas têm níveis de carbono mais altos de até 1%. Às vezes, eles são classificados como aços inoxidáveis ​​martensíticos de baixo carbono e alto carbono. Eles têm resistência à corrosão moderada, mas são considerados duros, fortes e ligeiramente quebradiços. Eles são magnéticos e podem ser testados de forma não destrutiva usando o método de inspeção por partículas magnéticas, ao contrário do aço inoxidável austenítico. Um aço inoxidável martensítico comum é o AISI 440C, que contém 16 a 18% de cromo e 0,95 a 1,2% de carbono. O aço inoxidável grau 440C é usado nas seguintes aplicações: blocos padrão, talheres, rolamentos e pistas de esferas, moldes e matrizes, facas.
  • Aços Inoxidáveis ​​Duplex. Os aços inoxidáveis ​​duplex, como o próprio nome indica, são uma combinação de dois dos principais tipos de ligas. Possuem uma microestrutura mista de austenita e ferrita, sendo o objetivo geralmente produzir uma mistura 50/50, embora em ligas comerciais a proporção possa ser 40/60. Sua resistência à corrosão é semelhante às suas contrapartes austeníticas, mas sua resistência à corrosão sob tensão (especialmente à corrosão sob tensão por cloreto), resistência à tração e resistência ao escoamento (aproximadamente o dobro da resistência ao escoamento dos aços inoxidáveis ​​austeníticos) são geralmente superiores aos dos aços inoxidáveis ​​austeníticos notas. Superduplex os aços têm força e resistência aprimoradas a todas as formas de corrosão em comparação com os aços austeníticos padrão. Os usos comuns são em aplicações marítimas, plantas petroquímicas, plantas de dessalinização, trocadores de calor e indústria de fabricação de papel. Hoje, a indústria de petróleo e gás é a maior usuária e tem pressionado por graus mais resistentes à corrosão, levando ao desenvolvimento de aços superduplex.
  • Aços Inoxidáveis ​​PH. Os aços inoxidáveis ​​PH (endurecimento por precipitação) contêm cerca de 17% de cromo e 4% de níquel. Esses aços podem desenvolver resistência muito alta por meio de adições de alumínio, titânio, nióbio, vanádio e/ou nitrogênio, que formam precipitados intermetálicos coerentes durante um processo de tratamento térmico conhecido como envelhecimento térmico. De todos os tipos de inoxidáveis ​​disponíveis, eles geralmente oferecem a maior combinação de alta resistência aliada a excelente tenacidade e resistência à corrosão. Eles são tão resistentes à corrosão quanto os graus austeníticos. Os usos comuns são na indústria aeroespacial e em algumas outras indústrias de alta tecnologia.

Propriedades do latão versus aço e aço inoxidável

As propriedades dos materiais são propriedades intensivas, ou seja, independem da quantidade de massa e podem variar de um lugar para outro dentro do sistema a qualquer momento. A base da ciência dos materiais envolve estudar a estrutura dos materiais e relacioná-los com suas propriedades (mecânicas, elétricas, etc.). Uma vez que um cientista de materiais conheça essa correlação estrutura-propriedade, ele poderá estudar o desempenho relativo de um material em uma determinada aplicação. Os principais determinantes da estrutura de um material e, portanto, de suas propriedades são seus elementos químicos constituintes e a maneira como ele foi processado em sua forma final.

Densidade de latão vs aço e aço inoxidável

A densidade do latão típico – UNS C26000 é de 8,53 g/cm3.

A densidade do aço inoxidável típico é de 8,0 g/cm3 (aço 304).

A densidade do aço típico é de 8,05 g/cm3.

A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida por volume:

ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade SI padrão é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras-massa por pé cúbico (lbm/ft3).

Como a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância, é óbvio que a densidade de uma substância depende fortemente de sua massa atômica e também de a densidade do número atômico (N; átomos/cm3),

  • Peso Atômico. A massa atômica é transportada pelo núcleo atômico, que ocupa apenas cerca de 10-12  do volume total do átomo ou menos, mas contém toda a carga positiva e pelo menos 99,95% da massa total do átomo. Portanto, é determinado pelo número de massa (número de prótons e nêutrons).
  • Densidade de Número Atômico. A densidade de número atômico  (N; átomos/cm3), que está associada aos raios atômicos, é o número de átomos de um determinado tipo por unidade de volume (V; cm3) do material. A densidade do número atômico (N; átomos/cm3) de um material puro com peso atômico ou molecular (M; gramas/mol) e a densidade do material (⍴; grama/cm3) é facilmente calculada a partir da seguinte equação usando o número de Avogadro (NA = 6,022 ×1023 átomos ou moléculas por mol):Densidade do Número Atômico
  • Estrutura de cristal. A densidade da substância cristalina é significativamente afetada por sua estrutura cristalina. A estrutura FCC, junto com seu parente hexagonal (hcp), tem o fator de empacotamento mais eficiente (74%). Metais contendo estruturas FCC incluem austenita, alumínio, cobre, chumbo, prata, ouro, níquel, platina e tório.

Propriedades Mecânicas do Latão vs Aço e Aço Inoxidável

Os materiais são freqüentemente escolhidos para várias aplicações porque possuem combinações desejáveis ​​de características mecânicas. Para aplicações estruturais, as propriedades do material são cruciais e os engenheiros devem levá-las em consideração.

Resistência do latão versus aço e aço inoxidável

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou mudança nas dimensões do material. A resistência de um material é sua capacidade de suportar essa carga aplicada sem falha ou deformação plástica.

Resistência à tração

A resistência à tração  máxima do latão de cartucho – UNS C26000 é de cerca de 315 MPa.

A máxima resistência à tração do aço inoxidável – tipo 304L é de 485 MPa.

A resistência à tração final do aço de baixo carbono está entre 400 – 550 MPa.

Resistência ao escoamento - Resistência à tração máxima - Tabela de materiaisresistência à tração final é o máximo na curva de tensão-deformação de engenharia. Isso corresponde à tensão máxima que pode ser sustentado por uma estrutura em tensão. A resistência à tração final é muitas vezes abreviada para “resistência à tração” ou mesmo para “o máximo”. Se essa tensão for aplicada e mantida, ocorrerá fratura. Freqüentemente, esse valor é significativamente maior do que o limite de escoamento (até 50 a 60 por cento a mais do que o rendimento de alguns tipos de metais). Quando um material dúctil atinge sua resistência máxima, ele sofre estricção onde a área da seção transversal é reduzida localmente. A curva tensão-deformação não contém tensão maior do que a resistência máxima. Mesmo que as deformações possam continuar a aumentar, a tensão geralmente diminui após o limite de resistência ter sido alcançado. É uma propriedade intensiva; portanto, seu valor não depende do tamanho do corpo de prova. Porém, depende de outros fatores, como o preparo do corpo de prova, temperatura do ambiente de teste e do material. A resistência máxima à tração varia de 50 MPa para um alumínio até 3000 MPa para aços de alta resistência.

Força de Rendimento

A resistência ao escoamento do latão de cartucho – UNS C26000 é de cerca de 95 MPa.

O limite de escoamento do aço inoxidável – tipo 304L é de 170 MPa.

A resistência ao escoamento do aço de baixo carbono é de 250 MPa.

O ponto de escoamento é o ponto em uma curva tensão-deformação que indica o limite do comportamento elástico e o início do comportamento plástico. Força de rendimento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde começa a deformação não linear (elástica + plástica). Antes do ponto de escoamento, o material se deformará elasticamente e retornará à sua forma original quando a tensão aplicada for removida. Uma vez ultrapassado o ponto de escoamento, alguma fração da deformação será permanente e irreversível. Alguns aços e outros materiais exibem um comportamento denominado fenômeno do ponto de escoamento. As resistências ao escoamento variam de 35 MPa para um alumínio de baixa resistência a mais de 1400 MPa para aços de resistência muito alta.

Módulo de elasticidade de Young

O módulo de elasticidade de Young do latão de cartucho – UNS C26000 é de cerca de 110 GPa.

O módulo de elasticidade do aço inoxidável de Young – tipo 304 e 304L é de 193 GPa.

O módulo de elasticidade de Young do aço de baixo carbono é de 200 GPa.

módulo de elasticidade de Young é o módulo de elasticidade para tensão de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração. Até uma tensão limite, um corpo poderá recuperar suas dimensões com a retirada da carga. As tensões aplicadas fazem com que os átomos em um cristal se movam de sua posição de equilíbrio. Todos os átomos são deslocados na mesma quantidade e ainda mantêm sua geometria relativa. Quando as tensões são removidas, todos os átomos retornam às suas posições originais e nenhuma deformação permanente ocorre. De acordo com a lei de Hooke, a tensão é proporcional à deformação (na região elástica), e a inclinação é o módulo de Young. O módulo de Young é igual à tensão longitudinal dividida pela deformação.

Dureza do Latão vs Aço e Aço Inoxidável

A dureza Brinell do latão de cartucho – UNS C26000 é de aproximadamente 100 MPa.

A dureza Brinell do aço inoxidável – tipo 304 é de aproximadamente 201 MPa.

A dureza Brinell do aço de baixo carbono é de aproximadamente 120 MPa.

A dureza Brinell do aço de alto carbono é de aproximadamente 200 MPa.

número de dureza Brinell

O teste de dureza Rockwell é um dos testes de dureza de indentação mais comuns, que foi desenvolvido para testes de dureza. Em contraste com o teste Brinell, o testador Rockwell mede a profundidade de penetração de um penetrador sob uma grande carga (carga principal) em comparação com a penetração feita por uma pré-carga (carga menor). A carga menor estabelece a posição zero. A carga principal é aplicada e, em seguida, removida, mantendo a carga secundária. A diferença entre a profundidade de penetração antes e depois da aplicação da carga principal é usada para calcular o número de dureza Rockwell. Ou seja, a profundidade de penetração e a dureza são inversamente proporcionais. A principal vantagem da dureza Rockwell é sua capacidade de exibir valores de dureza diretamente. O resultado é um número adimensional anotado como HRA, HRB, HRC, etc., onde a última letra é a respectiva escala Rockwell.

O teste Rockwell C é realizado com um penetrador Brale (cone de diamante de 120°) e uma carga maior de 150kg.

Propriedades Térmicas do Latão vs Aço e Aço Inoxidável

As propriedades térmicas dos materiais referem-se à resposta dos materiais às mudanças de thermodynamics/thermodynamic-properties/what-is-temperature-physics/”>temperatura e à aplicação de calor. À medida que um sólido absorve thermodynamics/what-is-energy-physics/”>energia na forma de calor, sua temperatura aumenta e suas dimensões aumentam. Mas diferentes materiais reagem à aplicação de calor de forma diferente.

A capacidade térmica, a expansão térmica e a condutividade térmica são propriedades frequentemente críticas no uso prático de sólidos.

Ponto de Fusão do Latão vs Aço e Aço Inoxidável

O ponto de fusão do latão de cartucho – UNS C26000 é de cerca de 950°C.

O ponto de fusão do aço inoxidável – aço tipo 304 é de cerca de 1450°C.

O ponto de fusão do aço de baixo carbono é de cerca de 1450°C.

Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a fase líquida. O ponto de fusão de uma substância é a temperatura na qual ocorre essa mudança de fase. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio.

Condutividade Térmica de Latão vs Aço e Aço Inoxidável

A condutividade térmica do latão de cartucho – UNS C26000 é de 120 W/(mK).

A condutividade térmica do aço inoxidável – tipo 304 é de 20 W/(mK).

A condutividade térmica do aço típico é de 20 W/(mK).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. Em geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto podemos geralmente escrever k = k (T). Definições semelhantes estão associadas às condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Referências:
Ciência dos Materiais:

Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Veja acima:
Ligas

Esperamos que este artigo, Latão vs Aço e Aço Inoxidável – Comparação – Prós e Contras, ajude você. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.