A Martensita é uma estrutura metaestável muito dura com uma estrutura cristalina tetragonal de corpo centrado (BCT). A martensita é formada nos aços quando a taxa de resfriamento da austenita é tão alta que os átomos de carbono não têm tempo de se difundir para fora da estrutura cristalina em quantidades suficientes para formar a cementita (Fe3C). Portanto, é um produto de transformação sem difusão. Qualquer difusão resulta na formação de fases de ferrita e cementita. É nomeado após o metalúrgico alemão Adolf Martens (1850-1914).
Ao contrário da decomposição isotérmica dos constituintes da fase por difusão, a martensita não é uma fase associada ao equilíbrio térmico. Assim, não aparece no diagrama de fase de equilíbrio ferro-carbono. Pode ser pensado como um produto de transformação que é competitivo com perlita e bainita.
A microestrutura da martensita nos aços tem diferentes morfologias e pode aparecer como martensita lath ou martensita plana. Para o aço com 0–0,6% de carbono, a martensita tem a aparência de ripas e é chamada de Martensita de ripas. Para aço com mais de 1% de carbono, formará uma estrutura semelhante a uma placa chamada Martensita de placa. A martensita de placa, como o nome indica, forma-se como cristais lenticulares (em forma de lente) com um padrão em zigue-zague de placas menores. Entre essas duas porcentagens, a aparência física dos grãos é uma mistura das duas. A resistência da martensita é reduzida à medida que a quantidade de austenita retida aumenta.
Transformação Martensítica
O endurecimento por transformação, também conhecido como endurecimento por transformação martensítica, é um dos métodos mais comuns de endurecimento, que é usado principalmente para aços (isto é, aços carbono e aços inoxidáveis). A transformação martensítica não é, entretanto, exclusiva das ligas ferro-carbono. É encontrado em outros sistemas e é caracterizado, em parte, pela transformação sem difusão.
Os aços Martensíticos usam predominantemente níveis mais altos de C e Mn, juntamente com tratamento térmico para aumentar a resistência. O produto acabado terá uma microestrutura duplex de ferrita com vários níveis de martensita degenerada. Isso permite vários níveis de força. Na metalurgia, a têmpera é mais comumente usada para endurecer o aço pela introdução de martensita. Existe um equilíbrio entre dureza e tenacidade em qualquer aço; quanto mais duro o aço, menos duro ou resistente a impactos ele é, e quanto mais resistente a impactos, menos duro ele é.
A martensita é produzida a partir da austenita como resultado da têmpera ou outra forma de resfriamento rápido. A austenita em ligas de ferro-carbono geralmente está presente apenas acima da temperatura eutetóide crítica (723°C) e abaixo de 1500°C, dependendo do teor de carbono. No caso de taxas normais de resfriamento, conforme a austenita esfria, o carbono se difunde para fora da austenita e forma carboneto de ferro rico em carbono (cementita) e deixa para trás a ferrita pobre em carbono. Dependendo da composição da liga, uma camada de ferrita e cementita, chamada perlita, pode se formar. Mas em caso de resfriamento rápido, o carbono não tem tempo suficiente para se difundir e se transforma em uma forma tetragonal de corpo centrado altamente deformada chamada martensita que é supersaturada com carbono. Todos os átomos de carbono permanecem como impurezas intersticiais na martensita.
Martensita Temperada
A capacidade relativa de uma liga ferrosa de formar martensita é chamada de temperabilidade. A temperabilidade é comumente medida como a distância abaixo de uma superfície temperada na qual o metal exibe uma dureza específica de 50 HRC, por exemplo, ou uma porcentagem específica de martensita na microestrutura. A maior dureza de um aço perlítico é de 43 HRC, enquanto a martensita pode atingir 72 HRC. Martensita fresca é muito frágil se o teor de carbono for superior a aproximadamente 0,2 a 0,3%. É tão frágil que não pode ser usado para a maioria das aplicações. Essa fragilidade pode ser removida (com alguma perda de dureza) se o aço temperado for levemente aquecido em um processo conhecido como revenido. A têmpera é realizada aquecendo um aço martensítico a uma temperatura abaixo do eutetóide por um período de tempo especificado (por exemplo, entre 250°C e 650°C).
Este tratamento térmico de revenimento permite, por processos de difusão, a formação de martensita revenida, conforme a reação:
martensita (BCT, monofásica) → martensita temperada (ferrita + Fe3C fases)
onde a martensita BCT monofásica, que é supersaturada com carbono, se transforma na Martensita revenida, composta pelas fases estáveis de ferrita e cementita. Sua microestrutura é semelhante à microestrutura da esferoide, mas neste caso a martensita revenida contém partículas de cementita extremamente pequenas e uniformemente dispersas incorporadas em uma matriz contínua de ferrita. A martensita temperada pode ser quase tão dura e forte quanto a martensita, mas com ductilidade e tenacidade substancialmente aumentadas.
Aço Inoxidável Martensítico
Os aços inoxidáveis martensíticos são semelhantes aos aços ferríticos por serem baseados em cromo, mas têm níveis de carbono mais altos de até 1%. Às vezes, eles são classificados como aços inoxidáveis martensíticos de baixo carbono e alto carbono. Eles contêm 12 a 14% de cromo, 0,2 a 1% de molibdênio e nenhuma quantidade significativa de níquel. Quantidades mais altas de carbono permitem que eles sejam endurecidos e revenidos de maneira semelhante aos aços carbono e de baixa liga. Possuem moderada resistência à corrosão, mas são considerados duros, fortes, levemente quebradiços. Eles são magnéticos e podem ser testados de forma não destrutiva usando o método de inspeção por partículas magnéticas, ao contrário do aço inoxidável austenítico. Um aço inoxidável martensítico comum é o AISI 440C, que contém 16 a 18% de cromo e 0,95 a 1,2% de carbono. O aço inoxidável grau 440C é usado nas seguintes aplicações: blocos padrão, talheres, rolamentos e pistas de esferas, moldes e matrizes, facas.
Como foi escrito, os aços inoxidáveis martensíticos podem ser endurecidos e revenidos através de várias formas de envelhecimento/tratamento térmico: Os mecanismos metalúrgicos responsáveis pelas transformações martensíticas que ocorrem nestas ligas inoxidáveis durante a austenitização e têmpera são essencialmente os mesmos que são usados para endurece aços carbono e ligas de baixo teor de liga. O tratamento térmico normalmente envolve três etapas:
- Austenitização, na qual o aço é aquecido a uma temperatura na faixa de 980 – 1050 °C, dependendo dos graus. A austenita é uma fase cúbica de face centrada.
- Têmpera. Após a austenitização, os aços devem ser temperados. As ligas inoxidáveis martensíticas podem ser resfriadas usando ar parado, vácuo de pressão positiva ou têmpera interrompida em óleo. A austenita é transformada em martensita, uma estrutura cristalina tetragonal de corpo centrado duro. A martensita é muito dura e muito frágil para a maioria das aplicações.
- Revenimento, ou seja, aquecimento a cerca de 500 °C, manutenção da temperatura e, em seguida, resfriamento ao ar. Aumentar a temperatura de revenimento diminui o limite de elasticidade e resistência à tração, mas aumenta o alongamento e a resistência ao impacto.
A resistência dos aços inoxidáveis aos efeitos químicos dos agentes corrosivos é baseada na passivação. Para que a passivação ocorra e permaneça estável, a liga Fe-Cr deve ter um teor mínimo de cromo de cerca de 10,5% em peso, acima do qual a passividade pode ocorrer e abaixo do qual é impossível. O cromo pode ser usado como um elemento de endurecimento e é freqüentemente usado com um elemento de endurecimento, como o níquel, para produzir propriedades mecânicas superiores.
Resistência à tração
A resistência máxima à tração do aço inoxidável Martensítico – Grau 440C é de 760 MPa.
Dureza
A dureza Brinell do aço inoxidável Martensítico – Grau 440C é de aproximadamente 270 MPa.
Outras fases comuns em aços e ferros
O tratamento térmico de aços requer uma compreensão tanto das fases de equilíbrio quanto das fases metaestáveis que ocorrem durante o aquecimento e/ou resfriamento. Para os aços, as fases de equilíbrio estável incluem:
- Ferrita. A ferrita ou α-ferrita é uma fase de estrutura cúbica de corpo centrado do ferro que existe abaixo de temperaturas de 912°C para baixas concentrações de carbono no ferro. A α-ferrita só pode dissolver até 0,02% do carbono a 727°C. Isso ocorre devido à configuração da rede de ferro que forma uma estrutura cristalina BCC. A fase primária de baixo teor de carbono ou aço macio e a maioria dos ferros fundidos à temperatura ambiente é α-Fe ferromagnético.
- Austenita. A austenita, também conhecida como ferro de fase gama (γ-Fe), é uma fase de estrutura cúbica de face centrada não magnética do ferro. A austenita em ligas de ferro-carbono geralmente está presente apenas acima da temperatura eutetóide crítica (723°C) e abaixo de 1500°C, dependendo do teor de carbono. No entanto, pode ser mantido à temperatura ambiente por adições de ligas como níquel ou manganês. O carbono desempenha um papel importante no tratamento térmico, porque expande a faixa de temperatura de estabilidade da austenita. O teor de carbono mais alto reduz a temperatura necessária para austenitizar o aço – de modo que os átomos de ferro se rearranjam para formar uma estrutura de treliça FCC. A austenita está presente no tipo de aço inoxidável mais comumente usado, que é muito conhecido por sua resistência à corrosão.
- Grafite. Adicionar uma pequena quantidade de carbono não metálico ao ferro troca sua grande ductilidade por maior resistência.
- Cementita. A cementita (Fe3C) é um composto metaestável e, em algumas circunstâncias, pode se dissociar ou se decompor para formar α-ferrita e grafite, de acordo com a reação: Fe3C → 3Fe (α) + C (grafite). A cementita em sua forma pura é uma cerâmica e é dura e quebradiça, o que a torna adequada para o reforço de aços. Suas propriedades mecânicas são função de sua microestrutura, que depende de como ele é misturado com a ferrita.
As fases metaestáveis são:
- Perlita. Na metalurgia, a perlita é uma estrutura metálica em camadas de duas fases, composta por camadas alternadas de ferrita (87,5% em peso) e cementita (12,5% em peso) que ocorre em alguns aços e ferros fundidos. É nomeado por sua semelhança com a madrepérola.
- Martensita. A martensita é uma estrutura metaestável muito dura com uma estrutura cristalina tetragonal de corpo centrado (BCT). A martensita é formada nos aços quando a taxa de resfriamento da austenita é tão alta que os átomos de carbono não têm tempo de se difundir para fora da estrutura cristalina em quantidades suficientes para formar a cementita (Fe3C).
- Bainita. A bainita é uma microestrutura semelhante a uma placa que se forma nos aços a partir da austenita quando as taxas de resfriamento não são rápidas o
suficiente para produzir martensita, mas ainda são rápidas o suficiente para que o carbono não tenha tempo suficiente para se difundir para formar a perlita. Os aços bainíticos são geralmente mais fortes e duros que os aços perlíticos; ainda assim, exibem uma combinação desejável de resistência e ductilidade.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
Esperamos que este artigo, Martensita – Aço Martensítico, ajude você. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.