Facebook Instagram Youtube Twitter

¿Cuál es la fuerza del hierro forjado? Definición

La resistencia máxima a la tracción del hierro forjado varía mucho y se encuentra entre 240 y 350 MPa. El límite elástico del hierro forjado varía mucho y se encuentra entre 160 y 220 MPa.
hierro forjado
Muchos productos descritos como hierro forjado, como barandillas, muebles de jardín y puertas, en realidad están hechos de acero dulce.

El hierro forjado es una aleación de hierro con muy bajo contenido de carbono (menos del 0,08%) con respecto al hierro fundido (2,1% a 4%). La microestructura del hierro forjado muestra inclusiones de escoria oscura en ferrita. Es una variedad blanda, dúctil y fibrosa que se produce a partir de una masa semifundida de glóbulos de hierro relativamente puro parcialmente rodeados de escoria. Por lo general, contiene menos del 0,1 por ciento de carbono y 1 o 2 por ciento de escoria. El hierro forjado es magnético, resistente a la corrosión y se suelda fácilmente. Tiene alta elasticidad y resistencia a la tracción. Se puede calentar y recalentar y trabajar en varias formas. El hierro forjado ya no se produce a escala comercial. El equivalente funcional moderno del hierro forjado es el acero dulce, también llamado acero con bajo contenido de carbono. Muchos productos descritos como hierro forjado, como barandillas, muebles de jardín y puertas, en realidad están hechos de acero dulce. Por ejemplo, la Torre Eiffel es una torre de celosía de hierro forjado.

Resistencia del hierro forjado

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.

Resistencia a la tracción

La resistencia máxima a la tracción del hierro forjado varía mucho y se encuentra entre 240 y 350 MPa.

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Límite de elasticidad

El límite elástico del hierro forjado varía mucho y se encuentra entre 160 y 220 MPa.

El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez que se supera el límite de fluencia, una fracción de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.

Módulo de Young

El módulo de Young del hierro forjado es 190 GPa.

El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

 

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Hierro forjado [/su_button ]

Esperamos que este artículo, La fuerza del hierro forjado , lo ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.