Facebook Instagram Youtube Twitter

¿Cuáles son las propiedades de los aceros inoxidables austeníticos? Definición

El acero inoxidable tipo 304 (que contiene 18% -20% de cromo y 8% -10,5% de níquel) es el acero inoxidable austenítico más común. También se le conoce como acero inoxidable «18/8» debido a su composición, que incluye 18% de cromo y 8% de níquel.

Acero inoxidable 304Los aceros inoxidables austeníticos contienen entre 16 y 25% de cromo y también pueden contener nitrógeno en solución, los cuales contribuyen a su relativamente alta resistencia a la corrosiónLos aceros inoxidables austeníticos se clasifican con designaciones de serie AISI 200 o 300; los grados de la serie 300 son aleaciones de cromo-níquel, y los de la serie 200 representan un conjunto de composiciones en las que el manganeso y / o el nitrógeno reemplazan parte del níquel. Los aceros inoxidables austeníticos tienen la mejor resistencia a la corrosión de todos los aceros inoxidables y tienen excelentes propiedades criogénicas y buena resistencia a altas temperaturas. Poseen una cúbica centrada en la cara (fcc) microestructura que no es magnética y se pueden soldar fácilmente. Esta estructura cristalina de austenita se logra mediante adiciones suficientes de los elementos estabilizadores de austenita níquel, manganeso y nitrógeno. El acero inoxidable austenítico es la familia más grande de aceros inoxidables y representa aproximadamente dos tercios de toda la producción de acero inoxidable. Su límite elástico es bajo (200 a 300 MPa), lo que limita su uso para componentes estructurales y de soporte de carga. No pueden endurecerse mediante tratamiento térmico, pero tienen la útil propiedad de poder endurecerse con el trabajo a niveles de alta resistencia al tiempo que conservan un nivel útil de ductilidad y tenacidad. Los aceros inoxidables dúplex tienden a preferirse en tales situaciones debido a su alta resistencia y resistencia a la corrosión. El grado más conocido es el inoxidable AISI 304, que contiene metales de cromo (entre 15% y 20%) y níquel (entre 2% y 10,5%) como principales componentes distintos del hierro. El acero inoxidable 304 tiene una excelente resistencia a una amplia gama de entornos atmosféricos y muchos medios corrosivos. Estas aleaciones generalmente se caracterizan por ser dúctiles, soldables y endurecibles por conformado en frío.

Acero inoxidable – Tipo 304

El acero inoxidable tipo 304 (que contiene 18% -20% de cromo y 8% -10,5% de níquel) es el acero inoxidable más común. También se le conoce como acero inoxidable » 18/8 » por su composición, que incluye 18% de cromo y 8% de níquel. Esta aleación resiste la mayoría de los tipos de corrosión. Es un acero inoxidable austenítico y también tiene excelentes propiedades criogénicas, buena resistencia a altas temperaturas y buenas propiedades de formación y soldadura. Es menos conductor eléctrico y térmico que el acero al carbono y es esencialmente no magnético.

El acero inoxidable tipo 304L, que se usa ampliamente en la industria nuclear, es una versión con muy bajo contenido de carbono de la aleación de acero 304. Este grado tiene propiedades mecánicas ligeramente más bajas que el grado estándar 304, pero todavía se usa ampliamente gracias a su versatilidad. El contenido de carbono más bajo en 304L minimiza la precipitación de carburo nociva o dañina como resultado de la soldadura. Por lo tanto, el 304L se puede utilizar «como soldado» en entornos de corrosión severa y elimina la necesidad de recocido. El grado 304 también tiene una buena resistencia a la oxidación en servicio intermitente hasta 870°C y en servicio continuo hasta 925°C.

El cuerpo de la vasija del reactor está construido de acero al carbono de baja aleación de alta calidad, y todas las superficies que entran en contacto con el refrigerante del reactor están revestidas con un mínimo de aproximadamente 3 a 10 mm de acero inoxidable austenítico para minimizar la corrosión. Dado que el grado 304L no requiere recocido posterior a la soldadura, se usa ampliamente en componentes de gran calibre.

acero inoxidable - Tipo 304

Propiedades de los aceros inoxidables austeníticos

Las propiedades de los materiales son propiedades intensivas, lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.

Propiedades mecánicas de los aceros inoxidables austeníticos

Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.

Resistencia de los aceros inoxidables austeníticos

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.

Resistencia a la tracción

La resistencia máxima a la tracción del acero inoxidable – tipo 304 es de 515 MPa.

La resistencia máxima a la tracción del acero inoxidable – tipo 304L es de 485 MPa.

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Límite de elasticidad

El límite elástico del acero inoxidable – tipo 304 es 205 MPa.

El límite elástico del acero inoxidable – tipo 304L es de 170 MPa.

El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez superado el límite elástico, una parte de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.

Módulo de Young

El módulo de Young del acero inoxidable – tipo 304 y 304L es 193 GPa.

El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

Dureza de los aceros inoxidables austeníticos

La dureza Brinell del acero inoxidable – tipo 304 es de aproximadamente 201 MPa.

Número de dureza BrinellEn la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie (deformación plástica localizada) y el rayadoLa dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.

La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro  como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.

La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB. El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno (wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.

El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:

Ensayo de dureza Brinell

Hay una variedad de métodos de prueba de uso común (por ejemplo, Brinell, KnoopVickers y Rockwell). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.

 

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Acero inoxidable austenítico

Esperamos que este artículo, Propiedades de los aceros inoxidables austeníticos , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.