En la ingeniería de materiales, los hierros fundidos son una clase de aleaciones ferrosas con contenidos de carbono superiores al 2,14% en peso. Normalmente, los hierros colados contienen de 2,14% en peso a 4,0% en peso de carbono y en cualquier lugar de 0,5% en peso a 3% en peso de silicio. Las aleaciones de hierro con menor contenido de carbono se conocen como acero . La diferencia es que los hierros fundidos pueden aprovechar la solidificación eutéctica en el sistema binario hierro-carbono. El término eutéctico es griego para «fusión fácil o bien«, y el punto eutéctico representa la composición en el diagrama de fases donde se alcanza la temperatura de fusión más baja. Para el sistema hierro-carbono el punto eutéctico se produce a una composición de 4,26% en peso de C y una temperatura de 1148°C .
El hierro fundido, por lo tanto, tiene un punto de fusión más bajo (entre aproximadamente 1150°C y 1300°C) que el acero tradicional, lo que lo hace más fácil de fundir que los aceros estándar. Debido a su alta fluidez cuando se funde, el hierro líquido llena fácilmente moldes intrincados y puede formar formas complejas. La mayoría de las aplicaciones requieren muy poco acabado, por lo que los hierros fundidos se utilizan para una amplia variedad de piezas pequeñas y grandes. Es un material ideal para la fundición en arena en formas complejas, como colectores de escape, sin la necesidad de un mecanizado adicional extenso. Además, algunos hierros fundidos son muy frágiles y el vaciado es la técnica de fabricación más conveniente. Hierros fundidos se han convertido en un material de ingeniería con una amplia gama de aplicaciones y se utilizan en tuberías, máquinas y piezas de la industria automotriz, como culatas, bloques de cilindros y cajas de engranajes. Es resistente al daño por oxidación.
Propiedades del hierro fundido
Las propiedades de los materiales son propiedades intensivas , lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.
Resistencia de los hierros fundidos
En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.
Resistencia a la tracción
La resistencia máxima a la tracción del hierro fundido gris (ASTM A48 Clase 40) es 295 MPa.
La resistencia máxima a la tracción del hierro fundido blanco martensítico (ASTM A532 Clase 1 Tipo A) es 350 MPa.
Resistencia máxima a la tracción del hierro fundido maleable – ASTM A220 es 580 MPa.
La resistencia máxima a la tracción del hierro fundido dúctil – ASTM A536 – 60-40-18 es 414 Mpa (> 60 ksi).
La máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Corresponde al esfuerzo máximo que puede soportar una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura.
Módulo de Young
El módulo de Young del hierro fundido gris (ASTM A48 Clase 40) es 124 GPa.
El módulo de Young del hierro fundido blanco martensítico (ASTM A532 Clase 1 Tipo A) es de 175 GPa.
El módulo de Young del hierro fundido maleable – ASTM A220 es 172 GPa.
El módulo de Young de hierro fundido dúctil – ASTM A536 – 60-40-18 es 170 GPa.
El módulo de Young es el módulo de elasticidad para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga.
Dureza de los hierros fundidos
La dureza Brinell del hierro fundido gris (ASTM A48 Clase 40) es de aproximadamente 235 MPa.
La dureza Brinell del hierro fundido gris martensítico blanco fundido (ASTM A532 Clase 1 Tipo A) es de aproximadamente 600 MPa.
La dureza Brinell del hierro fundido maleable – ASTM A220 es de aproximadamente 250 MPa.
La dureza Brinell del hierro fundido dúctil – ASTM A536 – 60-40-18 es de aproximadamente 150 – 180 MPa.
En la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie (deformación plástica localizada) y el rayado. La dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.
Propiedades térmicas de los hierros fundidos
Las propiedades térmicas de los materiales se refieren a la respuesta de los materiales a los cambios de thermodynamics/thermodynamic-properties/what-is-temperature-physics/»>temperatura y a la aplicación de calor. A medida que un sólido absorbe thermodynamics/what-is-energy-physics/»>energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.
Punto de fusión de los hierros fundidos
Punto de fusión del hierro fundido gris: el acero ASTM A48 es de alrededor de 1260°C.
El punto de fusión del hierro fundido blanco martensítico (ASTM A532 Clase 1 Tipo A) es de alrededor de 1260°C.
El punto de fusión del hierro fundido maleable – ASTM A220 es de alrededor de 1260°C.
El punto de fusión del hierro fundido dúctil – ASTM A536 – acero 60-40-18 es de alrededor de 1150°C.
En general, la fusión es un cambio de fase de una sustancia de la fase sólida a la líquida. El punto de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El punto de fusión también define una condición en la que el sólido y el líquido pueden existir en equilibrio.
Conductividad térmica de los hierros fundidos
La conductividad térmica del hierro fundido gris – ASTM A48 es 53 W/(mK).
La conductividad térmica del hierro fundido blanco martensítico (ASTM A532 Clase 1 Tipo A) es de 15 a 30 W/(mK).
La conductividad térmica del hierro fundido maleable es de aproximadamente 40 W/(mK).
La conductividad térmica del hierro fundido dúctil es de 36 W/(mK).
Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada conductividad térmica, k (o λ), medida en W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por conducción. Tenga en cuenta que la ley de Fourier se aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.
Esperamos que este artículo, Propiedades del hierro fundido , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.