Facebook Instagram Youtube Twitter

¿Cuáles son las propiedades térmicas de las aleaciones de titanio? Definición

El titanio se usa ampliamente en la ingeniería energética. Tiene muy buenas propiedades térmicas. La conductividad térmica del titanio comercialmente puro – Grado 2 es de 16 W/(mK).

Aleación de titanioEl titanio es un metal de transición brillante con un color plateado, baja densidad y alta resistencia. El titanio es resistente a la corrosión en agua de mar, agua regia y cloro. En las centrales eléctricas, el titanio se puede utilizar en condensadores de superficie. El titanio puro es más resistente que los aceros comunes con bajo contenido de carbono, pero un 45% más ligero. También es dos veces más fuerte que las aleaciones de aluminio débiles, pero solo un 60% más pesado. Las dos propiedades más útiles del metal son la resistencia a la corrosión y la relación fuerza-densidad, el más alto de cualquier elemento metálico. La resistencia a la corrosión de las aleaciones de titanio a temperaturas normales es inusualmente alta. La resistencia a la corrosión del titanio se basa en la formación de una capa de óxido protectora estable. Aunque el titanio «comercialmente puro» tiene propiedades mecánicas aceptables y se ha utilizado para implantes ortopédicos y dentales, para la mayoría de las aplicaciones el titanio se alea con pequeñas cantidades de aluminio y vanadio, típicamente 6% y 4% respectivamente, en peso. Esta mezcla tiene una solubilidad sólida que varía drásticamente con la temperatura, lo que le permite experimentar un fortalecimiento por precipitación.

Las aleaciones de titanio son metales que contienen una mezcla de titanio y otros elementos químicos. Estas aleaciones tienen una resistencia a la tracción y una tenacidad muy altas (incluso a temperaturas extremas). Son livianos, tienen una extraordinaria resistencia a la corrosión y la capacidad de soportar temperaturas extremas.

Titanio comercialmente puro – Grado 1 en condensadores de vapor

En las plantas de energía nuclear, el sistema del condensador de vapor principal (MC) está diseñado para condensar y desairear el vapor de escape de la turbina principal y proporcionar un disipador de calor para el sistema de derivación de la turbina. El vapor de escape de las turbinas LP se condensa pasando por tubos que contienen agua del sistema de enfriamiento. Estos tubos suelen estar hechos de acero inoxidable, aleaciones de cobre o titanio, dependiendo de varios criterios de selección (como conductividad térmica o resistencia a la corrosión).  Tubos de condensador de titanio suelen ser la mejor opción técnica, sin embargo, el titanio es un material muy caro y el uso de tubos de condensador de titanio está asociado a unos costes iniciales muy elevados. El titanio, en particular, puede aportar mejoras importantes, como velocidades del agua más altas que promueven mejores coeficientes de calor, excelente resistencia a la abrasión, erosión y corrosión, mejorando así la resistencia a las incrustaciones. Los tubos son en su mayoría tubos soldados de ASTM SB 338 grado 1 fabricados en una línea de fabricación continua. Este titanio comercialmente puro es el titanio más blando y tiene la mayor ductilidad. Tiene buenas características de conformado en frío y proporciona una excelente resistencia a la corrosión. También tiene excelentes propiedades de soldadura y alta tenacidad al impacto. Todas las operaciones de fabricación (soldadura, recocido, pruebas no destructivas) están completamente automatizadas para producir tubos de alta calidad en grandes cantidades.

Propiedades térmicas de las aleaciones de titanio

Las propiedades térmicas  de los materiales se refieren a la respuesta de los materiales a los cambios de  thermodynamics/thermodynamic-properties/what-is-temperature-physics/»>temperatura y a la aplicación de calor. A medida que un sólido absorbe thermodynamics/what-is-energy-physics/»>energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.

La capacidad caloríficala expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.

Punto de fusión de las aleaciones de titanio

El punto de fusión del titanio comercialmente puro – Grado 2 es de alrededor de 1660°C.

El punto de fusión de Ti-6Al-4V – aleación de titanio de grado 5 es de alrededor de 1660°C.

En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio.

Conductividad térmica de las aleaciones de titanio

La conductividad térmica del titanio comercialmente puro – Grado 2 es de 16 W/(mK).

La conductividad térmica de Ti-6Al-4V – aleación de titanio de grado 5 es de 6,7 W/(mK).

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica, k (o λ), medida en  W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción. Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T). Se asocian definiciones similares con conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Vea arriba:
Aleaciones de titanio

Esperamos que este artículo, Propiedades térmicas de las aleaciones de titanio , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.