El acero con alto contenido de carbono tiene aproximadamente un 0,60 a un 1,00% de contenido de carbono. La dureza es más alta que los otros grados pero la ductilidad disminuye. Casi siempre se utilizan en un estado endurecido y revenido y, como tales, son especialmente resistentes al desgaste y capaces de sostener un filo afilado. Por lo tanto, los aceros con alto contenido de carbono podrían usarse para resortes, cables de alambre, martillos, destornilladores, llaves inglesas y cuchillos. La serie 10xx (por ejemplo, acero 1095) es la opción más popular para el acero al carbono utilizado en cuchillos y katanas. Acero al carbono AISI 1095 es frágil y tiene una gran dureza y resistencia. El acero 1095, cuando se usa en cuchillos, tiene un gran filo y es muy fácil de afilar. Sin embargo, las propiedades de este tipo de acero le dan una tendencia a oxidarse fácilmente si no se aceita y se cuida deliberadamente.
Resumen
Nombre | Acero de alto carbono |
Fase en STP | N / A |
Densidad | 7850 kg/m3 |
Resistencia a la tracción | 685 MPa |
Límite de elasticidad | 525 MPa |
Módulo de elasticidad de Young | 200 GPa |
Dureza Brinell | 200 BHN |
Punto de fusion | 1515°C |
Conductividad térmica | 50 W/mK |
Capacidad calorífica | 490 J/gK |
Precio | 1 $/kg |
Aceros para herramientas
El acero para herramientas se refiere a una variedad de aceros al carbono y aleados que son particularmente adecuados para convertirse en herramientas. Su idoneidad proviene de su distintiva dureza, resistencia a la abrasión y deformación, y su capacidad para sostener un filo a temperaturas elevadas. Con un contenido de carbono entre 0,5% y 1,5%, los aceros para herramientas se fabrican en condiciones cuidadosamente controladas para producir la calidad requerida. La presencia de carburos en su matriz juega un papel dominante en las cualidades del acero para herramientas. Los cuatro elementos de aleación principales que forman carburos en el acero para herramientas y matrices son: tungsteno, cromo, vanadio y molibdeno. Estos elementos de aleación se combinan con el carbono para formar compuestos de carburo muy duros y resistentes al desgaste.
Precio del acero con alto contenido de carbono
Es difícil conocer el costo exacto de los diferentes materiales porque depende en gran medida de muchas variables como:
- el tipo de producto que le gustaría comprar
- la cantidad del producto
- el tipo exacto de material
Los precios de las materias primas cambian a diario. Están impulsados principalmente por la oferta, la demanda y los precios de la energía.
Sin embargo, como regla general, los aceros inoxidables cuestan entre cuatro y cinco veces más que el acero al carbono en costos de materiales. Acero al carbono es de aproximadamente 500 $/tonelada, mientras acero inoxidable cuesta alrededor de 2000 $/tonelada. Cuantos más elementos de aleación contenga el acero, más caro es. Con base en esa regla, es lógico suponer que el acero inoxidable austenítico 316L y el acero inoxidable martensítico 13% Cr costarán menos que los aceros inoxidables dúplex con 22% Cr y 25% Cr. Los aceros a base de níquel probablemente costarían al menos alrededor del precio de los aceros inoxidables dúplex. Obviamente, existen numerosos tipos de aceros de bajo a alto contenido de carbono y una amplia gama de evaluaciones de aceros inoxidables que cambian enormemente en costo. Por ejemplo, Inconel 600 (marca registrada de Special Metals), que pertenece a una familia de superaleaciones austeníticas a base de níquel-cromo, cuesta alrededor de 40000 $/tonelada.
Propiedades del acero con alto contenido de carbono – Acero AISI 1095
Las propiedades de los materiales son propiedades intensivas, lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.
Propiedades mecánicas del acero con alto contenido de carbono: acero AISI 1095
Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.
Resistencia del acero con alto contenido de carbono: acero AISI 1095
En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.
Resistencia a la tracción
La resistencia máxima a la tracción del acero con alto contenido de carbono es de 685 MPa.
La máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.
Límite de elasticidad
El límite elástico del acero con alto contenido de carbono es de 525 MPa.
El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez que se supera el límite de fluencia, una fracción de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.
Módulo de Young
El módulo de Young del acero con alto contenido de carbono es de 200 GPa.
El módulo de Young es el módulo de elasticidad para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.
Dureza del acero con alto contenido de carbono – Acero AISI 1095
La dureza Brinell del acero con alto contenido de carbono es de aproximadamente 200 MPa.
En la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie (deformación plástica localizada) y el rayado. La dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.
La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para las pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.
La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB. El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno (wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.
El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:
Hay una variedad de métodos de prueba de uso común (por ejemplo, Brinell, Knoop, Vickers y Rockwell). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.
Propiedades térmicas del acero con alto contenido de carbono – Acero AISI 1095
Las propiedades térmicas de los materiales se refieren a la respuesta de los materiales a los cambios de thermodynamics/thermodynamic-properties/what-is-temperature-physics/»>temperatura y a la aplicación de calor. A medida que un sólido absorbe thermodynamics/what-is-energy-physics/»>energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.
La capacidad calorífica, la expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.
Punto de fusión del acero con alto contenido de carbono: acero AISI 1095
El punto de fusión del acero con alto contenido de carbono es de alrededor de 1515°C.
En general, la fusión es un cambio de fase de una sustancia de la fase sólida a la líquida. El punto de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El punto de fusión también define una condición en la que el sólido y el líquido pueden existir en equilibrio.
Conductividad térmica del acero con alto contenido de carbono – Acero AISI 1095
La conductividad térmica del acero con alto contenido de carbono es de 50 W/(mK).
Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada conductividad térmica, k (o λ), medida en W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por conducción. Tenga en cuenta que la ley de Fourier se aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.
La conductividad térmica de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:
La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir k = k (T). Se asocian definiciones similares con las conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.
Esperamos que este artículo, Acero con alto contenido de carbono , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.