Facebook Instagram Youtube Twitter

¿Qué es el acero con bajo contenido de carbono? Definición

El acero con bajo contenido de carbono, también conocido como acero dulce, es ahora la forma más común de acero porque su precio es relativamente bajo y proporciona propiedades materiales que son aceptables para muchas aplicaciones. El acero con bajo contenido de carbono contiene aproximadamente entre un 0,05 y un 0,25% de carbono, lo que lo hace maleable y dúctil.
acero bajo en carbono
Las aplicaciones típicas del acero con bajo contenido de carbono incluyen componentes de carrocería de automóviles, formas estructurales (p. Ej., Vigas en I, canales y ángulos de hierro) y láminas que se utilizan en tuberías y edificios.

El acero con bajo contenido de carbono, también conocido como acero dulce, es ahora la forma más común de acero porque su precio es relativamente bajo y proporciona propiedades materiales que son aceptables para muchas aplicaciones. El acero con bajo contenido de carbono contiene aproximadamente entre un 0,05 y un 0,25% de carbono, lo que lo hace maleable y dúctil. El acero dulce tiene una resistencia a la tracción relativamente baja, pero es barato y fácil de formar; la dureza de la superficie se puede aumentar mediante la carburación.

Precio de la fuerza de la densidad de las propiedades del acero dulce

Resumen

Nombre Acero dulce
Fase en STP N / A
Densidad 7850 kg/m3
Resistencia a la tracción 400-550 MPa
Límite de elasticidad 250 MPa
Módulo de Young 200 GPa
Dureza Brinell 120 BHN
Punto de fusion 1450°C
Conductividad térmica 50 W/mK
Capacidad calorífica 510 J/gK
Precio 0,5 $/kg

Las aplicaciones típicas incluyen componentes de carrocería de automóviles, formas estructurales (p. Ej., Vigas en I, canales y ángulos de hierro) y láminas que se utilizan en tuberías y edificios. Por ejemplo, el acero A36 es un acero estructural común en los Estados Unidos. Las láminas de acero con bajo contenido de carbono utilizadas para aplicaciones de carrocería de automóviles, por ejemplo, se someten a una variedad de operaciones de conformado, incluida la embutición profunda. Las microestructuras constan de componentes de ferrita y perlita. Como consecuencia, estas aleaciones son relativamente blandas y débiles, pero tienen una ductilidad y tenacidad sobresalientes. Además, son mecanizables, soldables y, de todos los aceros, son los menos costosos de producir. La densidad de este metal es 7861,093 kg/m³ (0,284 lb/in³) y la resistencia a la tracción es un máximo de 500 MPa (72500 psi).

Acero bajo en carbono

98%Hierro en la tabla periódica

0,25%Carbono en la tabla periódica

1%Manganeso en la tabla periódica

Precio del acero con bajo contenido de carbono

Es difícil conocer el costo exacto de los diferentes materiales porque depende en gran medida de muchas variables como:

  • el tipo de producto que le gustaría comprar
  • la cantidad del producto
  • el tipo exacto de material

Los precios de las materias primas cambian a diario. Están impulsados ​​principalmente por la oferta, la demanda y los precios de la energía.

acero bajo en carbono
Las aplicaciones típicas del acero con bajo contenido de carbono incluyen componentes de carrocería de automóviles, formas estructurales (p. Ej., Vigas en I, canales y ángulos de hierro) y láminas que se utilizan en tuberías y edificios.

Sin embargo, como regla general, los  aceros inoxidables  cuestan entre cuatro y cinco veces más que  el acero al carbono  en costos de materiales. Acero al carbono es de aproximadamente 500 $/tonelada, mientras acero inoxidable cuesta alrededor de 2000 $/tonelada. Cuantos más elementos de aleación contenga el acero, más caro es. Con base en esa regla, es lógico suponer que el acero inoxidable austenítico 316L y el acero inoxidable martensítico 13% Cr costarán menos que los aceros inoxidables dúplex con 22% Cr y 25% Cr. Los aceros a base de níquel probablemente costarían al menos alrededor del precio de los aceros inoxidables dúplex. Obviamente, existen numerosos tipos de aceros de bajo a alto contenido de carbono y una amplia gama de evaluaciones de aceros inoxidables que cambian enormemente en costo. Por ejemplo, Inconel 600 (marca registrada de Special Metals), que pertenece a una familia de superaleaciones austeníticas a base de níquel-cromo, cuesta alrededor de 40000 $/tonelada.

Propiedades del acero con bajo contenido de carbono – ASTM A36

Las propiedades de los materiales son propiedades intensivas , lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.

Propiedades mecánicas del acero con bajo contenido de carbono – ASTM A36

Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.

Resistencia del acero con bajo contenido de carbono – ASTM A36

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.

Resistencia a la tracción

La resistencia máxima a la tracción del acero con bajo contenido de carbono se encuentra entre 400 y 550 MPa.

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Límite de elasticidad

El límite elástico del acero con bajo contenido de carbono es de 250 MPa.

El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Fuerza de produccióno el límite elástico es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez que se supera el límite de fluencia, una fracción de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.

Módulo de Young

El módulo de Young del acero con bajo contenido de carbono es de 200 GPa.

El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

Dureza del acero con bajo contenido de carbono – ASTM A36

La dureza Brinell del acero con bajo contenido de carbono es de aproximadamente 120 MPa.

Número de dureza BrinellEn la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie (deformación plástica localizada) y el rayadoLa dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.

La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para las pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro  como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.

La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB. El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno (wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.

El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:

Ensayo de dureza Brinell

Existe una variedad de métodos de prueba de uso común (por ejemplo, Brinell, KnoopVickers y Rockwell). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.

Propiedades térmicas del acero con bajo contenido de carbono – ASTM A36

Las propiedades térmicas  de los materiales se refieren a la respuesta de los materiales a los cambios de  temperatura y a la aplicación de calor. A medida que un sólido absorbe energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.

La capacidad caloríficala expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.

Punto de fusión del acero con bajo contenido de carbono – ASTM A36

El punto de fusión del acero con bajo contenido de carbono es de alrededor de 1450°C.

En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio.

Conductividad térmica del acero con bajo contenido de carbono – ASTM A36

El acero con bajo contenido de carbono es una sustancia de múltiples elementos, principalmente de hierro, con adiciones de carbono e impurezas. La conductividad térmica del hierro forjado es de alrededor de 50 W/(mK).

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica, k (o λ), medida en  W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción. Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T). Se asocian definiciones similares con conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

 

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Aceros

Esperamos que este artículo, Acero con bajo contenido de carbono , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.