En la ingeniería de materiales, los hierros fundidos son una clase de aleaciones ferrosas con contenidos de carbono superiores al 2,14% en peso. Normalmente, los hierros colados contienen de 2,14% en peso a 4,0% en peso de carbono y en cualquier lugar de 0,5% en peso a 3% en peso de silicio. Las aleaciones de hierro con menor contenido de carbono se conocen como acero. La diferencia es que los hierros fundidos pueden aprovechar la solidificación eutéctica en el sistema binario hierro-carbono. El término eutéctico es griego para «fusión fácil o bien«, y el punto eutéctico representa la composición en el diagrama de fases donde se alcanza la temperatura de fusión más baja. Para el sistema hierro-carbono el punto eutéctico se produce a una composición de 4,26% en peso de C y una temperatura de 1148°C .
Ver también: Tipos de hierros fundidos
Hierro fundido maleable
El arrabio maleable es arrabio blanco que ha sido recocido. Mediante un tratamiento térmico de recocido, la estructura frágil como primer molde se transforma en la forma maleable. Por tanto, su composición es muy similar a la del hierro fundido blanco, con cantidades ligeramente superiores de carbono y silicio. Hierro maleable contiene nódulos de grafito que no son realmente esféricos como lo son en el hierro dúctil, porque se forman como resultado del tratamiento térmico en lugar de formarse durante el enfriamiento de la masa fundida. El hierro maleable se fabrica fundiendo primero un hierro blanco de modo que se eviten las escamas de grafito y todo el carbono no disuelto esté en forma de carburo de hierro. El hierro maleable comienza como una fundición de hierro blanco que luego se trata térmicamente durante uno o dos días a aproximadamente 950°C (1740°F) y luego se enfría durante uno o dos días. Como resultado, el carbono en el carburo de hierro se transforma en nódulos de grafito rodeados por una matriz de ferrita o perlita, dependiendo de la velocidad de enfriamiento. El proceso lento permite que la tensión superficial forme nódulos de grafito en lugar de escamas. . Hierro maleable, como hierro dúctil, posee considerable ductilidad y tenacidad debido a su combinación de grafito nodular y matriz metálica baja en carbono. Como el hierro dúctil, el hierro maleable también exhibe alta resistencia a la corrosión, excelente maquinabilidad. La buena capacidad de amortiguación y la resistencia a la fatiga del hierro maleable también son útiles para un servicio prolongado en piezas sometidas a grandes esfuerzos. Hay dos tipos de hierro maleable ferrítico: corazón negro y corazón blanco.
Resumen
Nombre | Hierro maleable |
Fase en STP | N / A |
Densidad | 7150 kg/m3 |
Resistencia a la tracción | 580 MPa |
Límite de elasticidad | 480 MPa |
Módulo de Young | 172 GPa |
Dureza Brinell | 250 BHN |
Punto de fusion | 1260°C |
Conductividad térmica | 40 W/mK |
Capacidad calorífica | 465 J/gK |
Precio | 3 $/kg |
A menudo se utiliza para piezas pequeñas que requieren una buena resistencia a la tracción y la capacidad de flexionarse sin romperse (ductilidad). Las aplicaciones de los hierros fundidos maleables incluyen muchas piezas automotrices esenciales, como portadiferenciales, cajas de diferenciales, tapas de cojinetes, cajas de engranajes de dirección. Otros usos incluyen herramientas manuales, soportes, piezas de máquinas, accesorios eléctricos, accesorios de tubería, equipos agrícolas y hardware de minería.
Propiedades del hierro fundido maleable – ASTM A220
Las propiedades de los materiales son propiedades intensivas, lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.
Propiedades mecánicas del hierro fundido maleable – ASTM A220
Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.
Resistencia del hierro fundido maleable – ASTM A220
En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.
Resistencia a la tracción
Resistencia máxima a la tracción del hierro fundido maleable – ASTM A220 es 580 MPa.
La máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.
Límite de elasticidad
Límite elástico del hierro fundido maleable – ASTM A220 es 480 MPa
El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidades la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez superado el límite elástico, una parte de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.
Módulo de Young
El módulo de Young del hierro fundido maleable – ASTM A220 es 172 GPa.
El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.
Dureza del hierro fundido maleable – ASTM A220
La dureza Brinell del hierro fundido maleable – ASTM A220 es de aproximadamente 250 MPa.
En la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie (deformación plástica localizada) y el rayado. La dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.
La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.
La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB. El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno (wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.
El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:
Hay una variedad de métodos de prueba de uso común (por ejemplo, Brinell, Knoop, Vickers y Rockwell). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.
Propiedades térmicas del hierro fundido maleable – ASTM A220
Las propiedades térmicas de los materiales se refieren a la respuesta de los materiales a los cambios de thermodynamics/thermodynamic-properties/what-is-temperature-physics/»>temperatura y a la aplicación de calor. A medida que un sólido absorbe thermodynamics/what-is-energy-physics/»>energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.
La capacidad calorífica, la expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.
Punto de fusión del hierro fundido maleable – ASTM A220
El punto de fusión del hierro fundido maleable – ASTM A220 es de alrededor de 1260°C.
En general, la fusión es un cambio de fase de una sustancia de la fase sólida a la líquida. El punto de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El punto de fusión también define una condición en la que el sólido y el líquido pueden existir en equilibrio.
Conductividad térmica del hierro fundido maleable – ASTM A220
La conductividad térmica del hierro fundido maleable es de aproximadamente 40 W/(mK).
Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada conductividad térmica, k (o λ), medida en W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por conducción. Tenga en cuenta que la ley de Fourier se aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.
La conductividad térmica de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:
La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir k = k (T). Se asocian definiciones similares con conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.
Esperamos que este artículo, Hierro fundido maleable , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.