Facebook Instagram Youtube Twitter

¿Qué son las aleaciones de níquel? Definición

Las aleaciones de níquel exhiben una excelente ductilidad y tenacidad, incluso a altos niveles de resistencia y estas propiedades se conservan hasta bajas temperaturas. El níquel reduce la expansión térmica para una mejor estabilidad dimensional.

El níquel es un metal brillante de color blanco plateado con un ligero tinte dorado. El níquel es uno de los elementos de aleación más comunes. Aproximadamente el 65% de la producción de níquel se utiliza en aceros inoxidables. Debido a que el níquel no forma ningún compuesto de carburo en el acero, permanece en solución en la ferrita, fortaleciendo y endureciendo la fase de ferrita. Los aceros al níquel se tratan térmicamente fácilmente porque el níquel reduce la velocidad de enfriamiento crítica.

Las aleaciones a base de níquel (por ejemplo, aleaciones de Fe-Cr-Ni (Mo)) exhiben una excelente ductilidad y tenacidad, incluso a altos niveles de resistencia y estas propiedades se conservan hasta bajas temperaturas. El níquel y sus aleaciones son altamente resistentes a la corrosión en muchos ambientes, especialmente aquellos que son básicos (alcalinos). El níquel también reduce la expansión térmica para una mejor estabilidad dimensional. El níquel es el elemento base de las superaleaciones. Estos metales tienen una excelente resistencia a la deformación por fluencia térmica y conservan su rigidez, resistencia, tenacidad y estabilidad dimensional a temperaturas mucho más altas que los otros materiales estructurales aeroespaciales.

Tipos de aleaciones de níquel

Superaleaciones a base de níquel

superaleaciones - inconel - pala de turbinaLas superaleaciones a base de níquel constituyen actualmente más del 50% del peso de los motores de aviones avanzados. Las superaleaciones a base de níquel incluyen aleaciones reforzadas con solución sólida y aleaciones endurecibles por envejecimiento. Las aleaciones endurecibles por envejecimiento consisten en una matriz austenítica (fcc) dispersa con precipitación coherente de un Ni 3(Al, Ti) intermetálico con estructura fcc. Las superaleaciones a base de Ni son aleaciones con níquel como elemento de aleación primario que se prefieren como material de cuchilla en las aplicaciones discutidas anteriormente, en lugar de las superaleaciones a base de Co o Fe. Lo que es significativo para las superaleaciones a base de Ni es su alta resistencia, resistencia a la fluencia y a la corrosión a altas temperaturas. Es común fundir palas de turbina en forma solidificada direccionalmente o en forma monocristalina. Las palas monocristalinas se utilizan principalmente en la primera fila de la etapa de turbina.

Por ejemplo, Inconel es una marca registrada de Special Metals para una familia de superaleaciones austeníticas a base de níquel-cromo. Inconel 718 es una superaleación a base de níquel que posee propiedades de alta resistencia y resistencia a temperaturas elevadas. También demuestra una protección notable contra la corrosión y la oxidación. La resistencia a altas temperaturas de Inconel se desarrolla mediante el fortalecimiento de la solución sólida o el endurecimiento por precipitación, según la aleación. Inconel 718 está compuesto de 55% de níquel, 21% de cromo, 6% de hierro y pequeñas cantidades de manganeso, carbono y cobre.

Alpaca

La plata de níquel, también conocida como plata alemana, latón de níquel o alpaca, es una aleación de cobre con níquel y, a menudo, zinc. Por ejemplo, la aleación de cobre de níquel plata 65-12 UNS C75700 tiene buena resistencia a la corrosión y al deslustre, y alta conformabilidad. La alpaca recibe su nombre por su apariencia plateada, pero no contiene plata elemental a menos que esté chapada.

composición de níquel-plata

Constantan

Constantan es una aleación de cobre-níquel que generalmente consta de 55% de cobre y 45% de níquel y cantidades específicas menores de elementos adicionales para lograr valores precisos (casi constantes) para el coeficiente de temperatura de resistividad. Es decir, su característica principal es la baja variación térmica de su resistividad, que es constante en un amplio rango de temperaturas. Se conocen otras aleaciones con coeficientes de temperatura igualmente bajos, como la manganina.

Esta aleación tiene una alta resistividad eléctrica (4,9×10−7Ω·m), lo suficientemente alta como para lograr valores de resistencia adecuados incluso en redes muy pequeñas, el coeficiente de resistencia de temperatura más bajo y el EMF térmico más alto (también conocido como el efecto Seebeck) contra el platino de cualquiera de las aleaciones de cobre-níquel. Debido a las dos primeras de estas propiedades, se utiliza para resistencias eléctricas y, debido a la última propiedad, para termopares. Los termopares son dispositivos eléctricos que constan de dos conductores eléctricos diferentes que forman una unión eléctrica. Un termopar produce un voltaje dependiente de la temperatura como resultado del efecto termoeléctrico, y este voltaje se puede interpretar para medir la temperatura.

Por ejemplo, el constantan es el elemento negativo del termopar tipo J, siendo el hierro el positivo. Los termopares tipo J se utilizan en aplicaciones de tratamiento térmico. Además, Constantan es el elemento negativo del termopar tipo T con cobre el positivo. Estos termopares se utilizan a temperaturas criogénicas.

En los reactores nucleares, los termopares se colocan en ubicaciones preseleccionadas para medir la temperatura de salida del refrigerante del conjunto de combustible para su uso en la monitorización de la distribución de energía radial del núcleo y el refrigerante. Pero en este caso, los termopares deben resistir la irradiación de neutrones, por lo que se prefieren los termopares de tipo E (cromel-alumel) u otros termopares especiales.

Constantan

Invar

Invar es un grupo de aleaciones de níquel-hierro de baja expansión térmica que consta principalmente de níquel y hierro (por ejemplo, FeNi36). El nombre invariable proviene de la palabra invariable, refiriéndose a su relativa falta de expansión o contracción con los cambios de temperatura. La aleación Invar es dúctil y fácilmente soldable, y la maquinabilidad es similar al acero inoxidable austenítico.

Invar se utiliza donde se requiere una alta estabilidad dimensional , como instrumentos de precisión, relojes. Las aleaciones con bajos coeficientes de expansión forman la parte esencial de los bimetales y termostatos. Invar en sí todavía se usa hoy en día en una gran cantidad de electrodomésticos, desde planchas eléctricas y tostadoras hasta cocinas de gas y cortes de seguridad contra incendios. Los invariables también se pueden usar en sellos de vidrio a metal y componentes electrónicos y de radio. Casi todos los condensadores variables están hechos de Invar. Los puntales de los motores a reacción están hechos de Invar para garantizar la rigidez con los cambios de temperatura.

Propiedades de las aleaciones de níquel

Las propiedades de los materiales son propiedades intensivas, lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.

Propiedades mecánicas de las aleaciones de níquel

Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.

Resistencia de las aleaciones de níquel

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.

Resistencia a la tracción

La resistencia máxima a la tracción del constantan – 45Ni-55Cu depende en gran medida del procedimiento de tratamiento térmico, pero para la aleación recocida es de aproximadamente 420 MPa.

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Límite de elasticidad

El límite elástico de Constantan – 45Ni-55Cu depende en gran medida del procedimiento de tratamiento térmico, pero para la aleación recocida es de aproximadamente 150 MPa.

El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez que se supera el límite de fluencia, una fracción de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.

Módulo de Young

El módulo de Young de constantan – 45Ni-55Cu es de aproximadamente 162 GPa.

El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta un esfuerzo limitante, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

Dureza de las aleaciones de níquel

La dureza Rockwell de Constantan – 45Ni-55Cu es aproximadamente 50 HRB.

Número de dureza Brinell

La prueba de dureza Rockwell  es una de las pruebas de dureza por indentación más comunes, que se ha desarrollado para las pruebas de dureza. A diferencia de la prueba de Brinell, el probador Rockwell mide la profundidad de penetración de un penetrador bajo una carga grande (carga mayor) en comparación con la penetración realizada por una precarga (carga menor). La carga menor establece la posición cero. Se aplica la carga principal y luego se retira mientras se mantiene la carga menor. La diferencia entre la profundidad de penetración antes y después de la aplicación de la carga principal se utiliza para calcular el  número de dureza Rockwell. Es decir, la profundidad de penetración y la dureza son inversamente proporcionales. La principal ventaja de la dureza Rockwell es su capacidad para  mostrar los valores de dureza directamente. El resultado es un número adimensional anotado como  HRA, HRB, HRC, etc., donde la última letra es la escala de Rockwell respectiva.

La prueba Rockwell C se realiza con un penetrador Brale (cono de diamante de 120°) y una carga mayor de 150 kg.

Propiedades térmicas de las aleaciones de níquel

Las propiedades térmicas  de los materiales se refieren a la respuesta de los materiales a los cambios de  temperatura y a la aplicación de calor. A medida que un sólido absorbe energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.

La capacidad caloríficala expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.

Punto de fusión de las aleaciones de níquel

El punto de fusión del constantan – 45Ni-55Cu es de alrededor de 1210°C.

En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio.

Conductividad térmica de las aleaciones de níquel

La conductividad térmica de constantan – 45Ni-55Cu es 21 W/(mK).

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica, k (o λ), medida en  W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción . Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T). Se asocian definiciones similares con conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

Coeficiente de temperatura de resistencia de Constantan

El coeficiente de temperatura de resistencia (TCR), que describe cuánto cambia su valor a medida que cambia la temperatura , de constantan – 45Ni-55Cu es ±30ppm/°C. Por lo general, se expresa en unidades de ppm/°C ( partes por millón por grado centígrado).

Coeficiente de expansión térmica de Constantan

El coeficiente lineal de expansión térmica de constantan entre 25 y 105°C es 14,9×10-6K-1.

Coeficiente lineal de expansión térmica de invar – FeNi36 a 25 a 105 ° C es aproximadamente 1,2×10-6K-1 (1,2 ppm/°C).

La expansión térmica  es generalmente la tendencia de la materia a cambiar sus dimensiones en respuesta a un cambio de temperatura. Por lo general, se expresa como un cambio fraccionario en longitud o volumen por cambio de temperatura unitario. La expansión térmica es común para sólidos, líquidos y gases. A diferencia de los gases o líquidos, los materiales sólidos tienden a mantener su forma cuando experimentan expansión térmica. Un  coeficiente de expansión lineal  se emplea generalmente para describir la expansión de un sólido, mientras que un coeficiente de expansión de volumen es más útil para un líquido o un gas.

El  coeficiente de expansión térmica lineal  se define como:

coeficiente de expansión térmica lineal - ecuación

donde  L  es una medida de longitud particular y  dL / dT  es la tasa de cambio de esa dimensión lineal por unidad de cambio de temperatura.

Resisibilidad eléctrica de constantan

La resistividad eléctrica de constantan – 45Ni-55Cu es 4,9×10−7Ω·m, lo suficientemente alta para lograr valores de resistencia adecuados incluso en redes muy pequeñas.

La resistividad eléctrica  y su inversa,  la conductividad eléctrica, es una propiedad fundamental de un material que cuantifica la fuerza con la que resiste o conduce el flujo de corriente eléctrica. Una resistividad baja indica un material que permite fácilmente el flujo de corriente eléctrica. El símbolo de resistividad suele ser la letra griega ρ (rho). La unidad SI de resistividad eléctrica es el ohmímetro (Ω⋅m). Tenga en cuenta que la resistividad eléctrica no es lo mismo que la resistencia eléctrica. La resistencia eléctrica se expresa en ohmios. Mientras que la resistividad es una propiedad del material, la resistencia es propiedad de un objeto.

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Aleaciones

Esperamos que este artículo, Aleaciones de níquel , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.