Facebook Instagram Youtube Twitter

Qué son los aceros – Propiedades de los aceros – Definición

Los aceros son aleaciones de hierro y carbono que pueden contener concentraciones apreciables de otros elementos de aleación. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia.
Diagrama de fases Fe-Fe3C
En la figura, está el diagrama de fases de hierro-carburo de hierro (Fe-Fe3C). El porcentaje de carbono presente y la temperatura definen la fase de la aleación hierro-carbono y por tanto sus características físicas y propiedades mecánicas. El porcentaje de carbono determina el tipo de aleación ferrosa: hierro, acero o fundición. Fuente: wikipedia.org Läpple, Volker – Wärmebehandlung des Stahls Grundlagen. Licencia: CC BY-SA 4.0

Los aceros son aleaciones de hierro-carbono que pueden contener concentraciones apreciables de otros elementos de aleación. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. Debido a su muy alta resistencia, pero aún una dureza sustancial, y su capacidad para ser alterado en gran medida por el tratamiento térmico, el acero es una de las aleaciones ferrosas más útiles y comunes en el uso moderno. Existen miles de aleaciones que tienen diferentes composiciones y / o tratamientos térmicos. Las propiedades mecánicas son sensibles al contenido de carbono, que normalmente es inferior al 1,0% en peso. Según la clasificación AISI, el acero al carbono se divide en cuatro clases según el contenido de carbono.

Características de las aleaciones metálicas

Las aleaciones suelen ser más fuertes que los metales puros, aunque por lo general ofrecen una conductividad térmica y eléctrica reducida. La resistencia es el criterio más importante por el cual se juzgan muchos materiales estructurales. Por lo tanto, las aleaciones se utilizan para la construcción de ingeniería. El acero, probablemente el metal estructural más común, es un buen ejemplo de aleación. Es una aleación de hierro y carbono, con otros elementos que le confieren ciertas propiedades deseables.

Aceros al carbonoA veces es posible que un material esté compuesto por varias fases sólidas. Las fortalezas de estos materiales se mejoran al permitir que una estructura sólida se convierta en una forma compuesta por dos fases intercaladas. Cuando el material en cuestión es una aleación, es posible templar el metal desde un estado fundido para formar las fases intercaladas. El término temple se refiere a un tratamiento térmico en el que un material se enfría rápidamente en agua, aceite o aire para obtener ciertas propiedades del material, especialmente la dureza. En metalurgia, el temple se usa más comúnmente para endurecer el acero mediante la introducción de martensita.

Aleaciones ferrosas

aleación - metal - aceroLas aleaciones ferrosas, en las que el hierro es el componente principal, incluyen el acero y el arrabio (con un contenido de carbono de un pequeño porcentaje) y las aleaciones de hierro con otros metales (como el acero inoxidable). Las aleaciones ferrosas son conocidas por su resistencia. Las aleaciones suelen ser más fuertes que los metales puros, aunque generalmente ofrecen una conductividad eléctrica y térmica reducida. Las aleaciones ferrosas más simples se conocen como aceros y consisten en hierro (Fe) aleado con carbono (C) (alrededor del 0,1% al 1%, según el tipo). Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. Debido a su muy alta resistencia, pero aún sustancial dureza, y su capacidad de ser alterado en gran medida por el tratamiento térmico, el acero es una de las aleaciones ferrosas más útiles y comunes en el uso moderno. Su uso generalizado se explica por los siguientes factores:

  1. Los compuestos que contienen hierro existen en abundantes cantidades dentro de la corteza terrestre.
  2. Las aleaciones metálicas de hierro y acero se pueden producir utilizando técnicas de extracción, refinación, aleación y fabricación relativamente económicas.
  3. Las aleaciones ferrosas son extremadamente versátiles, ya que pueden adaptarse para tener una amplia gama de propiedades mecánicas y físicas.

La principal desventaja de muchas aleaciones ferrosas es su susceptibilidad a la corrosión. Al agregar cromo al acero, se puede mejorar su resistencia a la corrosión, creando acero inoxidable, mientras que agregar silicio alterará sus características eléctricas, produciendo acero al silicio.

Tipos de aceros: clasificación basada en la composición

  • acero bajo en carbono
    Las aplicaciones típicas del acero con bajo contenido de carbono incluyen componentes de carrocería de automóviles, formas estructurales (p. Ej., Vigas en I, canales y ángulos de hierro) y láminas que se utilizan en tuberías y edificios.

    Acero. Los aceros son aleaciones de hierro y carbono que pueden contener concentraciones apreciables de otros elementos de aleación. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. Debido a su muy alta resistencia, pero aún sustancial dureza, y su capacidad de ser alterado en gran medida por el tratamiento térmico, el acero es una de las aleaciones ferrosas más útiles y comunes en el uso moderno. Existen miles de aleaciones que tienen diferentes composiciones y / o tratamientos térmicos. Las propiedades mecánicas son sensibles al contenido de carbono, que normalmente es inferior al 1,0% en peso. Según la clasificación AISI, el acero al carbono se divide en cuatro clases según el contenido de carbono:

    • Aceros bajos en carbono. El acero con bajo contenido de carbono, también conocido como acero dulce, es ahora la forma más común de acero porque su precio es relativamente bajo y proporciona propiedades de material que son aceptables para muchas aplicaciones. El acero con bajo contenido de carbono contiene aproximadamente entre un 0,05 y un 0,25% de carbono, lo que lo hace maleable y dúctil. El acero dulce tiene una resistencia a la tracción relativamente baja, pero es barato y fácil de formar; la dureza de la superficie se puede aumentar mediante la carburación.
    • Acero de carbono medio
      El acero con contenido medio de carbono se utiliza principalmente en la producción de componentes de máquinas, ejes, ejes, engranajes, cigüeñales, acoplamientos y forjas; también podría utilizarse en rieles y ruedas de ferrocarril y otras piezas de máquinas y componentes estructurales de alta resistencia que requieran una combinación de alta resistencia, resistencia al desgaste y tenacidad.

      Aceros Medio Carbono. El acero con contenido medio de carbono tiene aproximadamente un 0,3–0,6% de contenido de carbono. Equilibra la ductilidad y la fuerza y ​​tiene buena resistencia al desgaste. Este grado de acero se utiliza principalmente en la producción de componentes de máquinas, ejes, ejes, engranajes, cigüeñales, acoplamientos y forjas, y también podría utilizarse en rieles y ruedas de ferrocarril.

    • Aceros con alto contenido de carbono. El acero con alto contenido de carbono tiene aproximadamente un 0,60 a un 1,00% de contenido de carbono. La dureza es más alta que los otros grados pero la ductilidad disminuye. Los aceros con alto contenido de carbono se pueden utilizar para resortes, cables, martillos, destornilladores y llaves.
    • Aceros con alto contenido de carbono. El acero con alto contenido de carbono tiene aproximadamente un 1,25% a un 2,0% de contenido de carbono. Aceros templables hasta gran dureza. Este grado de acero podría usarse para productos de acero duro, como resortes de camiones, herramientas de corte de metal y otros propósitos especiales como cuchillos, ejes o punzones (de uso no industrial). La mayoría de los aceros con más del 2,5% de contenido de carbono se fabrican mediante pulvimetalurgia.
  • Aceros Aleados. El acero es una aleación de hierro y carbono, pero el término acero de aleación generalmente solo se refiere a aceros que contienen otros elementos, como vanadio, molibdeno o cobalto, en cantidades suficientes para alterar las propiedades del acero base. En general, el acero aleado es acero que se alea con una variedad de elementos en cantidades totales entre 1.0% y 50% en peso para mejorar sus propiedades mecánicas. Los aceros aleados se dividen en dos grupos:
    • Aceros de baja aleación
    • Aceros de alta aleación
  • Superaleaciones
    Hoja de turbina de vapor. Las superaleaciones (típicamente aleaciones austeníticas cúbicas centradas en las caras) basadas en Co, Ni y Fe pueden diseñarse para ser altamente resistentes a la fluencia y, por lo tanto, han surgido como un material ideal en entornos de alta temperatura. Fuente wikipedia.org Licencia: CC BY-SA 3.0

    Acero inoxidable. Los aceros inoxidables se definen como aceros bajos en carbono con al menos un 10% de cromo con o sin otros elementos de aleación. Su fuerza y ​​resistencia a la corrosión a menudo lo convierten en el material de elección en equipos de transporte y procesamiento, piezas de motores y armas de fuego. El cromo aumenta la dureza, la fuerza y ​​la resistencia a la corrosión. El níquel brinda beneficios similares pero agrega dureza sin sacrificar la ductilidad y tenacidad. También reduce la expansión térmica para una mejor estabilidad dimensional.

  • Superaleaciones

Metales ferrosos especiales

  • Aceros para herramientas
  • Aceros de alta velocidad
  • Aceros resistentes a los golpes
  • Acero plateado

Propiedades de los aceros

Resistencia de los aceros

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.

Resistencia a la tracción

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Ejemplo: máxima resistencia a la tracción: acero con bajo contenido de carbono

La resistencia máxima a la tracción del acero con bajo contenido de carbono se encuentra entre 400 y 550 MPa.

Ejemplo: máxima resistencia a la tracción: acero con alto contenido de carbono

La máxima resistencia a la tracción del acero con alto contenido de carbono es de 1100 MPa.

Límite de elasticidad

El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez superado el límite elástico, una parte de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.

Ejemplo: límite elástico: acero con bajo contenido de carbono

El límite elástico del acero con bajo contenido de carbono es de 250 MPa.

Ejemplo: límite elástico: acero con alto contenido de carbono

El límite elástico del acero con alto contenido de carbono es de 800 MPa.

Módulo de Young

El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

Ejemplo: Módulo de elasticidad de Young: Acero con bajo contenido de carbono

El módulo de elasticidad de Young del acero con bajo contenido de carbono es de 200 GPa.

Dureza de aceros

Número de dureza BrinellEn la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie (deformación plástica localizada) y el rayadoLa dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.

La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para las pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro  como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.

La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB. El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno (wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.

El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:

Ensayo de dureza Brinell

Existe una variedad de métodos de prueba de uso común (por ejemplo, Brinell, KnoopVickers y Rockwell). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.

Ejemplo: dureza del acero con bajo contenido de carbono

La dureza Brinell del acero con bajo contenido de carbono es de aproximadamente 120 MPa.

Ejemplo: dureza del acero con alto contenido de carbono

La dureza Brinell del acero con alto contenido de carbono es de aproximadamente 200 MPa.

Ejemplo: dureza del acero de Damasco

La dureza Rockwell del acero de Damasco depende del tipo actual de acero, pero puede ser aproximadamente 62-64 HRC Rockwell.

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: comprender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Metales

Esperamos que este artículo, Aceros – Propiedades de los aceros , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.