Facebook Instagram Youtube Twitter

Quelle est la dureté des alliages de cuivre – Définition

La dureté des alliages de cuivre dépend fortement de certains alliages. Par exemple, la dureté Rockwell du cuivre béryllium – UNS C17200 est d’environ 82 HRB.

laitonLes alliages de cuivre sont des alliages à base de cuivre, dans lesquels les principaux éléments d’alliage sont Zn, Sn, Si, Al, Ni. Les alliages à base de Cu constituent principalement des solutions solides de substitution, pour lesquelles des atomes de soluté ou d’impureté remplacent ou se substituent aux atomes hôtes . Plusieurs caractéristiques des atomes de soluté et de solvant déterminent le degré de dissolution du premier dans le second. Celles-ci sont exprimées par les règles de Hume-Rothery. Il existe jusqu’à 400 compositions différentes de cuivre et d’alliages de cuivre vaguement regroupés en catégories: cuivre, alliage à haute teneur en cuivre, laitons, bronzes, nickels de cuivre, cuivre-nickel-zinc (maillechort), cuivre au plomb et alliages spéciaux. De plus, un nombre limité d’alliages de cuivre peuvent être renforcés par traitement thermique. par conséquent, le travail à froid et/ou l’alliage en solution solide doivent être utilisés pour améliorer ces propriétés mécaniques.

Types d’alliages de cuivre

Comme cela a été écrit, il existe jusqu’à 400 compositions différentes de cuivre et d’alliages de cuivre regroupées dans les catégories suivantes: cuivre, alliage à haute teneur en cuivre, laitons, bronzes, nickels de cuivre, cuivre-nickel-zinc (argent nickel), cuivre au plomb et métaux spéciaux. alliages. Dans les points suivants, nous résumons les principales propriétés de certains matériaux à base de cuivre.

  • Alliages de cuivreCuivre à brai électrolytique (ETP). Le cuivre de brai dur électrolytique, UNS C11000, est du cuivre pur (avec un maximum de 0,0355% d’impuretés) raffiné par un processus de raffinage électrolytique et c’est la qualité de cuivre la plus largement utilisée dans le monde. L’ETP a une conductivité minimale de 100 % IACS et doit être pure à 99,9 %. Il a 0,02% à 0,04% d’oxygène contenu (typique). Le câblage électrique est le marché le plus important pour l’industrie du cuivre. Cela comprend le câblage d’alimentation structurel, le câble de distribution d’alimentation, le fil d’appareil, le câble de communication, le fil et le câble automobile et le fil magnétique. Environ la moitié de tout le cuivre extrait est utilisé pour les conducteurs de fils et de câbles électriques. Le cuivre pur a la meilleure conductivité électrique et thermique de tous les métaux commerciaux. La conductivité du cuivre est de 97% celle de l’argent. En raison de son coût beaucoup plus faible et de sa plus grande abondance, le cuivre est traditionnellement le matériau standard utilisé pour les applications de transmission d’électricité.
  • Laiton. Le laiton est le terme générique désignant une gamme d’ alliages cuivre-zinc. Le laiton peut être allié au zinc dans différentes proportions, ce qui donne un matériau aux propriétés mécaniques, anticorrosion et thermiques variables. Des quantités accrues de zinc confèrent au matériau une résistance et une ductilité améliorées. Les laitons ayant une teneur en cuivre supérieure à 63 % sont les plus ductiles de tous les alliages de cuivre et sont façonnés par des opérations complexes de formage à froid. Le laiton a une plus grande malléabilité que le bronze ou le zinc. Le point de fusion relativement bas du laiton et sa fluidité en font un matériau relativement facile à couler. Le laiton peut avoir une couleur de surface allant du rouge au jaune en fonction de la teneur en zinc. Certaines des utilisations courantes des alliages de laiton comprennent les bijoux de fantaisie, les serrures, les charnières, les engrenages, les roulements, les raccords de tuyaux, les douilles de munitions, les radiateurs automobiles, les instruments de musique, les emballages électroniques et les pièces de monnaie.
  • Bronze. Les bronzes sont une famille d’alliages à base de cuivre traditionnellement alliés à l’étain, mais peuvent désigner des alliages de cuivre et d’autres éléments (par exemple l’aluminium, le silicium et le nickel). Les bronzes sont un peu plus résistants que les laitons, mais ils ont toujours un degré élevé de résistance à la corrosion. Généralement, ils sont utilisés lorsque, en plus de la résistance à la corrosion, de bonnes propriétés de traction sont requises. Par exemple, le cuivre au béryllium atteint la plus grande résistance (jusqu’à 1 400 MPa) de tous les alliages à base de cuivre.
  • Alliage cuivre-nickel. Les cupronickels sont des alliages cuivre-nickel qui contiennent généralement de 60 à 90 % de cuivre et de nickel comme élément d’alliage principal. Les deux principaux alliages sont le 90/10 et le 70/30. D’autres éléments de renforcement, tels que le manganèse et le fer, peuvent également être contenus. Les cupronickels ont une excellente résistance à la corrosion causée par l’eau de mer. Malgré sa forte teneur en cuivre, le cupronickel est de couleur argentée. L’ajout de nickel au cuivre améliore également la solidité et la résistance à la corrosion, mais une bonne ductilité est conservée.
  • Maillechort. Le maillechort, également connu sous le nom d’argent allemand, de laiton nickelé ou d’alpaga, est un alliage de cuivre avec du nickel et souvent du zinc. Par exemple, l’alliage de cuivre nickel argent 65-12 UNS C75700 a une bonne résistance à la corrosion et au ternissement, et une formabilité élevée. Le maillechort est nommé en raison de son aspect argenté, mais il ne contient pas d’argent élémentaire à moins qu’il ne soit plaqué.

Dureté des alliages de cuivre

La dureté Vickers du cuivre à brai électrolytique (ETP) dépend fortement de l’état du matériau, mais elle se situe entre 50 et 150 HV.

La dureté Brinell du laiton à cartouche – UNS C26000 est d’environ 100 MPa.

La dureté Brinell du bronze d’aluminium – UNS C95400 est d’environ 170 MPa. La dureté des bronzes d’aluminium augmente avec la teneur en aluminium (et autres alliages) ainsi qu’avec les contraintes causées par le travail à froid.

La dureté Brinell du bronze à l’étain – UNS C90500 – le bronze à canon est d’environ 75 BHN.

La dureté Rockwell du cuivre béryllium – UNS C17200 est d’environ 82 HRB.

La dureté Brinell du cupronickel – UNS C70600 est d’environ HB 100.

La dureté Rockwell du maillechort – UNS C75700 est d’environ 45 HRB.

Numéro de dureté Brinell

Le test de dureté Rockwell est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le nombre de dureté Rockwell. C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté HRA, HRB, HRC, etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale (cône diamant 120°) et une charge majeure de 150kg.

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Alliages de cuivre  » style= »plat » background= »#ffffff » color= »#606060″ size= »5″ radius= »10″ icon= »icône : lien » icon_color= »#5d5d5d » text_shadow= »0px 0px 0px #000000″ ][/su_button]

Nous espérons que cet article, Dureté des alliages de cuivre, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.