Facebook Instagram Youtube Twitter

Quelle est la force de la fonte blanche – Définition

La résistance à la traction ultime de la fonte blanche martensitique (ASTM A532 Classe 1 Type A) est de 350 MPa. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Comme cela a été écrit, les fontes sont l’un des alliages les plus complexes utilisés dans l’industrie. En raison de la teneur plus élevée en carbone, la structure de la fonte, contrairement à celle de l’ acier, présente une phase riche en carbone. En fonction principalement de la composition, de la vitesse de refroidissement et du traitement à l’état fondu, la phase riche en carbone peut se solidifier avec formation d’un eutectique stable (austénite-graphite) ou métastable (austénite-Fe3C).

Avec une teneur en silicium plus faible (contenant moins de 1,0 % en poids d’agent de graphitisation Si) et une vitesse de refroidissement plus rapide, le carbone de la fonte précipite hors de la masse fondue sous forme de cémentite en phase métastable, Fe3C, plutôt que de graphite. Le produit de cette solidification est connu sous le nom de fonte blanche (également appelée fonte refroidie). Les fontes blanches sont dures, cassantes et inusinables, tandis que les fontes grises à graphite plus tendre sont raisonnablement solides et usinables. Une surface de rupture de cet alliage a un aspect blanc, et c’est pourquoi on l’appelle fonte blanche. Il est difficile de refroidir des pièces moulées épaisses assez rapidement pour solidifier la fonte sous forme de fonte blanche tout au long. Cependant, un refroidissement rapide peut être utilisé pour solidifier une coquille de fonte blanche, après quoi le reste se refroidit plus lentement pour former un noyau de fonte grise. Ce type de coulée, parfois appelé «coulée refroidie», a une surface extérieure plus dure et un noyau intérieur plus résistant.

Le fer blanc est trop fragile pour être utilisé dans de nombreux composants structurels, mais avec une bonne dureté et une bonne résistance à l’abrasion et un coût relativement faible, il trouve une utilisation dans les applications où la résistance à l’usure est souhaitable, comme sur les dents des excavatrices, les roues et les volutes des pompes à boue. , coquilles et barres de levage dans les broyeurs à boulets.

Par exemple, la fonte blanche martensitique Ni-Cr-HC (alliage nickel-chrome à haute teneur en carbone), ASTM A532 classe 1 type A, est de la fonte blanche martensitique, dans laquelle le nickel est le principal élément d’alliage car, à des niveaux de 3 à 5%, il est efficace pour supprimer la transformation de la matrice austénitique en perlite, garantissant ainsi qu’une structure martensitique dure se développera lors du refroidissement dans le moule. Ce matériau peut également être appelé Ni-Hard 1. Ni-Hard 1 est un matériau résistant à l’abrasion utilisé dans les applications où l’impact est également un problème en tant que mécanisme d’usure.

Fonte blanche

Propriétés de la fonte blanche – fonte blanche martensitique Ni-Cr-HC

Les propriétés des matériaux sont des propriétés intensives, c’est-à-dire qu’elles sont indépendantes de la quantité de masse et peuvent varier d’un endroit à l’autre du système à tout moment. La base de la science des matériaux consiste à étudier la structure des matériaux et à les relier à leurs propriétés (mécaniques, électriques, etc.). Une fois qu’un spécialiste des matériaux connaît cette corrélation structure-propriété, il peut ensuite étudier les performances relatives d’un matériau dans une application donnée. Les principaux déterminants de la structure d’un matériau et donc de ses propriétés sont ses éléments chimiques constitutifs et la manière dont il a été transformé en sa forme finale.

Propriétés mécaniques de la fonte blanche – Fonte blanche martensitique Ni-Cr-HC

Les matériaux sont fréquemment choisis pour diverses applications car ils présentent des combinaisons souhaitables de caractéristiques mécaniques. Pour les applications structurelles, les propriétés des matériaux sont cruciales et les ingénieurs doivent en tenir compte.

Résistance de la fonte blanche – Fonte blanche martensitique Ni-Cr-HC

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime de la fonte blanche martensitique (ASTM A532 Classe 1 Type A) est de 350 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young de la fonte blanche martensitique (ASTM A532 Classe 1 Type A) est de 175 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
fonte blanche

Nous espérons que cet article, Force de la fonte blanche, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.