Facebook Instagram Youtube Twitter

Quelle est la force et la dureté de la soudure tendre – 60-40 soudure – Définition

La résistance à la traction ultime de la soudure tendre – la soudure 60-40 dépend fortement de la température, mais pour 19 °C, elle est d’environ 56 MPa. Dureté Brinell de la soudure tendre – 60-40 soudure environ 16 HB. Résistance et dureté de la soudure tendre

soudure à l'étainLe brasage est une technique d’assemblage de métaux à l’aide d’un alliage de métal d’apport dont la température de fusion est inférieure à environ 425 °C (800 °F). En raison de cette température plus basse et des différents alliages utilisés comme charges, la réaction métallurgique entre la charge et la pièce à usiner est minime, ce qui entraîne un joint plus faible. Dans l’assemblage électronique, l’alliage eutectique avec 63% d’étain et 37% de plomb (ou 60/40, qui est presque identique en point de fusion) a été l’alliage de choix. Cet alliage eutectique a un point de fusion inférieur à celui de l’étain ou du plomb.

L’étain est un constituant important des soudures car il mouille et adhère à de nombreux métaux de base courants à des températures considérablement inférieures à leurs points de fusion. De petites quantités de divers métaux, notamment l’antimoine et l’argent, sont ajoutées aux soudures étain-plomb pour augmenter leur résistance. La soudure 60-40 fournit des joints solides et fiables dans une variété de conditions environnementales. Il existe également des soudures à haute teneur en étain, qui sont utilisées pour assembler des pièces d’appareils électriques car leur conductivité électrique est supérieure à celle des soudures à haute teneur en plomb. Ces soudures sont également utilisées là où le plomb peut présenter un danger, par exemple au contact de l’eau potable ou des aliments.

brasage tendre - alliage d'étain

Résistance des alliages de nickel

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

Résistance à la traction ultime de la soudure tendre – la soudure 60-40 dépend fortement de la température, mais pour 19 °C, elle est d’environ 56 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young de la soudure tendre – soudure 60-40 est d’environ 30 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Dureté de la soudure tendre – 60-40 soudure

Dureté Brinell de la soudure tendre – 60-40 soudure environ 16 HB.

Numéro de dureté Brinell

Le test de dureté Rockwell est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le nombre de dureté Rockwell. C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté HRA, HRB, HRC, etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale (cône diamant 120°) et une charge majeure de 150kg.

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
alliages d’étain

Nous espérons que cet article, Force et dureté de la soudure tendre – soudure 60-40, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.