Les aciers inoxydables PH (durcissement par précipitation) contiennent environ 17 % de chrome et 4 % de nickel. Ces aciers peuvent développer une résistance très élevée grâce à des ajouts d’aluminium, de titane, de niobium, de vanadium et/ou d’azote, qui forment des précipités intermétalliques cohérents au cours d’un processus de traitement thermique appelé vieillissement thermique. Au fur et à mesure que les précipités cohérents se forment dans toute la microstructure, ils tendent le réseau cristallin et empêchent le mouvement des dislocations ou des défauts dans le réseau d’un cristal. Comme les dislocations sont souvent les principaux vecteurs de plasticité, cela sert à durcir le matériau. Les aciers inoxydables à durcissement par précipitation ont une ténacité et une résistance élevées, et résistance à la corrosion. Les aciers inoxydables à durcissement par précipitation sont de plus en plus utilisés pour une variété d’applications dans la construction navale, les avions et les turbines à gaz, les industries chimiques et les centrales nucléaires.
Acier inoxydable 17-4PH
Par exemple, l’acier inoxydable trempé par précipitation 17-4 PH (AISI 630) a une microstructure initiale d’austénite ou de martensite. Les nuances austénitiques sont converties en nuances martensitiques par traitement thermique (par exemple par un traitement thermique à environ 1040 °C suivi d’une trempe) avant que le durcissement par précipitation puisse être effectué. Un traitement de vieillissement ultérieur à environ 475 °C précipite les phases riches en Nb et Cu qui augmentent la résistance jusqu’à une limite d’élasticité supérieure à 1000 MPa. Dans tous les traitements thermiques effectués, la microstructure prédominante est la martensite à lattes. Contrairement aux alliages austénitiques, cependant, le traitement thermique renforce les aciers PH à des niveaux plus élevés que les alliages martensitiques. Les aciers inoxydables à durcissement par précipitation sont désignés par la série AISI 600. De toutes les nuances d’acier inoxydable disponibles, ils offrent généralement la meilleure combinaison de haute résistance associée à une excellente ténacité et résistance à la corrosion. Ils sont aussi résistants à la corrosion que les nuances austénitiques. Les utilisations courantes sont dans l’aérospatiale et certaines autres industries de haute technologie.
Dans l’industrie nucléaire, l’acier 17-4PH peut être utilisé dans les barres de commande . Les barres de commande constituent généralement des ensembles de barres de commande en grappe (REP) et sont insérées dans des tubes de guidage à l’intérieur d’un assemblage de combustible nucléaire. Le matériau absorbant (par exemple des pastilles de carbure de bore) est protégé par le revêtement généralement en acier inoxydable. L’élément de commande comporte certains composants qui doivent avoir une résistance élevée aux chocs lorsque la fonction de sécurité est activée, de sorte que le matériau de ce composant doit avoir une résistance mécanique et une ténacité élevées. L’un des matériaux qui peut être spécifié pour cette application est l’acier inoxydable PH 17-4PH (UNS 17400).
Résistance de l’acier inoxydable PH
En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.
Résistance à la traction ultime
Résistance à la traction ultime des aciers à durcissement par précipitation – L’acier inoxydable 17-4PH dépend du processus de traitement thermique, mais il est d’environ 1000 MPa.
La résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.
Limite d’élasticité
Limite d’élasticité des aciers à durcissement par précipitation – L’acier inoxydable 17-4PH dépend du processus de traitement thermique, mais il est d’environ 850 MPa.
La limite d’ élasticité est le point sur une courbe contrainte-déformation qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.
Module de Young
Le module de Young des aciers à durcissement par précipitation – acier inoxydable 17-4PH est de 200 GPa.
Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.
Dureté de l’acier inoxydable PH
La dureté Brinell des aciers à durcissement par précipitation – L’acier inoxydable 17-4PH est d’environ 353 MPa.
En science des matériaux, la dureté est la capacité à résister à l’indentation de surface (déformation plastique localisée) et aux rayures. La dureté est probablement la propriété matérielle la plus mal définie car elle peut indiquer une résistance aux rayures, une résistance à l’abrasion, une résistance à l’indentation ou encore une résistance à la mise en forme ou à la déformation plastique localisée. La dureté est importante d’un point de vue technique car la résistance à l’usure par frottement ou érosion par la vapeur, l’huile et l’eau augmente généralement avec la dureté.
Le test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester. Le test typique utilise une bille en acier trempé de 10 mm (0,39 in) de diamètre comme pénétrateur avec une force de 3 000 kgf (29,42 kN; 6 614 lbf). La charge est maintenue constante pendant un temps déterminé (entre 10 et 30 s). Pour les matériaux plus tendres, une force plus faible est utilisée; pour les matériaux plus durs, une bille en carbure de tungstène remplace la bille en acier.
Le test fournit des résultats numériques pour quantifier la dureté d’un matériau, qui est exprimée par le nombre de dureté Brinell – HB. Le nombre de dureté Brinell est désigné par les normes d’essai les plus couramment utilisées (ASTM E10-14[2] et ISO 6506–1:2005) comme HBW (H de la dureté, B de Brinell et W du matériau du pénétrateur, le tungstène (wolfram) carbure). Dans les anciennes normes, HB ou HBS étaient utilisés pour désigner les mesures effectuées avec des pénétrateurs en acier.
L’ indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation:
Il existe une variété de méthodes d’essai couramment utilisées (par exemple, Brinell, Knoop, Vickers et Rockwell). Il existe des tableaux qui sont disponibles corrélant les nombres de dureté des différentes méthodes d’essai où la corrélation est applicable. Dans toutes les échelles, un nombre élevé de dureté représente un métal dur.
Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.
Nous espérons que cet article, Résistance et dureté de l’acier inoxydable PH, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.