Facebook Instagram Youtube Twitter

Qu’est-ce que la résistance et la dureté des alliages résistants à la corrosion – Définition

Le matériau le plus avancé du point de vue de la résistance et de la dureté est le titane. Les deux propriétés les plus utiles du métal sont la résistance à la corrosion et le rapport résistance/densité, le plus élevé de tous les éléments métalliques.

bronze d'aluminiumLes alliages anticorrosion, comme leur nom l’indique, sont des alliages à résistance à la corrosion renforcée. Certains métaux et alliages ferreux et de nombreux non ferreux sont largement utilisés dans les environnements corrosifs. Dans tous les cas, cela dépend fortement de certains environnements et d’autres conditions. Les alliages résistants à la corrosion sont utilisés pour les canalisations d’eau et de nombreuses applications chimiques et industrielles. Dans le cas des alliages ferreux, on parle d’aciers inoxydables et dans une certaine mesure de fontes. Mais certains alliages non ferreux résistant à la corrosion présentent une résistance à la corrosion remarquable et peuvent donc être utilisés à de nombreuses fins spéciales. Il existe deux raisons principales pour lesquelles les matériaux non ferreux sont préférés aux aciers et aux aciers inoxydables pour bon nombre de ces applications. Par exemple, bon nombre des les métaux et alliages non ferreux possèdent une résistance à la corrosion beaucoup plus élevée que les aciers alliés et les nuances d’acier inoxydable disponibles. Deuxièmement, un rapport résistance/poids élevé ou une conductivité thermique et électrique élevée peut fournir un avantage distinct par rapport à un alliage ferreux.

Résistance des alliages résistants à la corrosion

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime du bronze d’aluminium – UNS C95400 est d’environ 550 MPa.

Résistance à la traction ultime du superalliage – Inconel 718 dépend du processus de traitement thermique, mais il est d’environ 1200 MPa.

La résistance à la traction ultime du titane commercialement pur – Grade 2 est d’environ 340 MPa.

La résistance à la traction ultime de l’alliage d’aluminium 6061 dépend fortement de l’état du matériau, mais pour l’état T6, elle est d’environ 290 MPa.

La résistance à la traction ultime de l’acier inoxydable – type 304 est de 515 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Limite d’élasticité

La limite d’élasticité du bronze d’aluminium – UNS C95400 est d’environ 250 MPa.

Limite d’élasticité du superalliage – Inconel 718 dépend du processus de traitement thermique, mais il est d’environ 1030 MPa.

La limite d’élasticité du titane commercialement pur – Grade 2 est d’environ 300 MPa.

La limite d’élasticité de l’alliage d’aluminium 6061 dépend fortement de l’état du matériau, mais pour l’état T6, elle est d’environ 240 MPa.

La limite d’élasticité de l’acier inoxydable – type 304 est de 205 MPa.

La  limite d’ élasticité est le point sur une courbe contrainte-déformation qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young du bronze d’aluminium – UNS C95400 est d’environ 110 GPa.

Le module de Young du superalliage – Inconel 718 est de 200 GPa.

Le module de Young du titane commercialement pur – Grade 2 est d’environ 105 GPa.

Le module de Young de l’alliage d’aluminium 6061 est d’environ 69 GPa.

Le module de Young de l’ acier inoxydable  – type 304 et 304L est de 193 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Dureté des alliages résistants à la corrosion

La dureté Brinell du bronze d’aluminium – UNS C95400 est d’environ 170 MPa.

La dureté Brinell du superalliage – Inconel 718 dépend du processus de traitement thermique, mais elle est d’environ 330 MPa.

La dureté Rockwell du titane commercialement pur – Grade 2 est d’environ 80 HRB.

La dureté Brinell de l’alliage d’aluminium 6061 dépend fortement de l’état du matériau, mais pour l’état T6, elle est d’environ 95 MPa.

La dureté Brinell de l’acier inoxydable de type 304 est d’environ 201 MPa.

Numéro de dureté Brinell

Le test de dureté Rockwell est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le nombre de dureté Rockwell. C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté HRA, HRB, HRC, etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale (cône diamant 120°) et une charge majeure de 150kg.

 

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Alliages résistants à la corrosion

Nous espérons que cet article, Résistance et dureté des alliages résistants à la corrosion, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.