Facebook Instagram Youtube Twitter

Qu’est-ce que le bronze – Définition

Les bronzes sont une famille d’alliages à base de cuivre traditionnellement alliés à l’étain, mais peuvent désigner des alliages de cuivre et d’autres éléments (par exemple l’aluminium, le silicium et le nickel). Les bronzes sont un peu plus résistants que les laitons, mais ils ont toujours un degré élevé de résistance à la corrosion.

Le cuivre de haute pureté est un métal doux, malléable et ductile avec une conductivité thermique et électrique très élevée. Une surface fraîchement exposée de cuivre pur a une couleur rouge-orange. Le cuivre est utilisé comme conducteur de chaleur et d’électricité, comme matériau de construction et comme constituant de divers alliages métalliques, tels que l’argent sterling utilisé dans les bijoux, le cupronickel utilisé pour fabriquer du matériel marin et des pièces de monnaie, et le constantan utilisé dans les jauges de contrainte et les thermocouples. pour la mesure de la température. Le cuivre de haute pureté a une résistance ultime d’environ 210 MPa et une limite d’élasticité de 33 MPa, ce qui limite son utilisation dans les applications industrielles. Mais comme pour les autres alliages, le cuivre peut être renforcé. Le principal mécanisme de renforcement est l’ alliage dans des alliages à base de Cu.

Les alliages de cuivre sont des alliages à base de cuivre, dans lesquels les principaux éléments d’alliage sont Zn, Sn, Si, Al, Ni. Les alliages à base de Cu constituent principalement des solutions solides de substitution, pour lesquelles des atomes de soluté ou d’impureté remplacent ou se substituent aux atomes hôtes. Plusieurs caractéristiques des atomes de soluté et de solvant déterminent le degré de dissolution du premier dans le second. Celles-ci sont exprimées par les règles de Hume-Rothery. Il existe jusqu’à 400 compositions différentes de cuivre et d’alliages de cuivre vaguement regroupés en catégories : cuivre, alliage à haute teneur en cuivre, laitons, bronzes, nickels de cuivre, cuivre-nickel-zinc (maillechort), cuivre au plomb et alliages spéciaux. De plus, un nombre limité d’alliages de cuivre peuvent être renforcés par traitement thermique. par conséquent, le travail à froid et/ou l’alliage en solution solide doivent être utilisés pour améliorer ces propriétés mécaniques.

Propriétés du cuivre

Le cuivre est un matériau souple, résistant, ductile et malléable. Ces propriétés rendent le cuivre extrêmement approprié pour le formage de tubes, le tréfilage, le repoussage et l’emboutissage profond. Les autres propriétés clés présentées par le cuivre et ses alliages comprennent:

  • Excellente conductivité thermique. Le cuivre a une conductivité thermique 60 % plus élevée que l’aluminium, il est donc mieux à même de réduire les points chauds thermiques dans les systèmes de câblage électrique. Les conductivités électriques et thermiques des métaux proviennent du fait que leurs électrons externes sont délocalisés.
  • Excellente conductivité électrique. La conductivité du cuivre est de 97% celle de l’argent. En raison de son coût beaucoup plus faible et de sa plus grande abondance, le cuivre est traditionnellement le matériau standard utilisé pour les applications de transmission d’électricité. Cependant, l’aluminium est généralement utilisé dans les lignes électriques aériennes à haute tension car il pèse environ la moitié et coûte moins cher qu’un câble en cuivre à résistance comparable. A une température donnée, les conductivités thermique et électrique des métaux sont proportionnelles, mais élever la température augmente la conductivité thermique tout en diminuant la conductivité électrique. Ce comportement est quantifié dans la loi de Wiedemann-Franz.
  • Bonne résistance à la corrosion. Le cuivre ne réagit pas avec l’eau, mais il réagit lentement avec l’oxygène atmosphérique pour former une couche d’oxyde de cuivre brun-noir qui, contrairement à la rouille qui se forme sur le fer dans l’air humide, protège le métal sous-jacent d’une corrosion supplémentaire (passivation). Les alliages cuivre-nickel, le laiton aluminium et l’aluminium présentent une résistance supérieure à la corrosion par l’eau salée.
  • Bonne résistance à l’encrassement biologique
  • Bonne usinabilité. L’usinage du cuivre est possible, bien que les alliages soient préférés pour une bonne usinabilité dans la création de pièces complexes.
  • Conservation des propriétés mécaniques et électriques à des températures cryogéniques
  • Diamagnétique

Bronze

bronze d'aluminiumLes bronzes sont une famille d’alliages à base de cuivre traditionnellement alliés à l’étain, mais peuvent désigner des alliages de cuivre et d’autres éléments (par exemple l’aluminium, le silicium et le nickel). Les bronzes sont un peu plus résistants que les laitons, mais ils ont toujours un degré élevé de résistance à la corrosion. Généralement, ils sont utilisés lorsque, en plus de la résistance à la corrosion, de bonnes propriétés de traction sont requises. Par exemple, le cuivre au béryllium atteint la plus grande résistance (jusqu’à 1 400 MPa) de tous les alliages à base de cuivre.

Historiquement, l’alliage du cuivre avec un autre métal, par exemple l’étain pour fabriquer du bronze, a été pratiqué pour la première fois environ 4000 ans après la découverte de la fusion du cuivre, et environ 2000 ans après que le « bronze naturel » soit devenu d’usage général. Une civilisation ancienne est définie comme étant à l’âge du bronze soit en produisant du bronze en fondant son propre cuivre et en l’alliant avec de l’étain, de l’arsenic ou d’autres métaux. Le bronze, ou les alliages et mélanges de type bronze, ont été utilisés pour les pièces de monnaie sur une plus longue période. Les bronzes sont encore largement utilisés aujourd’hui pour les ressorts, les roulements, les bagues, les roulements pilotes de transmission automobile et les raccords similaires, et sont particulièrement courants dans les roulements des petits moteurs électriques. Le laiton et le bronze sont des matériaux d’ingénierie courants dans l’architecture moderne et principalement utilisés pour les toitures et les revêtements de façade en raison de leur aspect visuel.

bronze propriétés densité résistance prix

Résumé

Nom Bronze
Phase à STP N/A
Densité 8770 kg/m3
Résistance à la traction ultime 310 MPa
Limite d’élasticité 150 MPa
Module de Young 103 GPa
Dureté Brinell 75 BHN
Point de fusion 1000 °C
Conductivité thermique 75 W/mK
Capacité thermique 435 J/gK
Prix 4 $/kg

Types de bronzes

composition de bronzesComme cela a été écrit, les bronzes sont une famille d’alliages à base de cuivre traditionnellement alliés à l’étain, mais peuvent désigner des alliages de cuivre et d’autres éléments (par exemple, l’aluminium, le silicium et le nickel).

  • Étain et bronze phosphoreux. En général, les bronzes sont une famille d’alliages à base de cuivre traditionnellement alliés à l’étain, généralement avec environ 12 à 12,5% d’étain. L’ajout de petites quantités (0,01 à 0,45) de phosphore augmente encore la dureté, la résistance à la fatigue et la résistance à l’usure. L’ajout de ces alliages conduit à des applications telles que des ressorts, des attaches, des fixations de maçonnerie, des arbres, des axes de vannes, des engrenages et des roulements. Le bronze est également le métal préféré pour les cloches sous la forme d’un alliage de bronze à haute teneur en étain connu familièrement sous le nom de métal de cloche, qui contient environ 23% d’étain. Les alliages de bronze à haute teneur en étain se trouvent généralement également dans les engrenages ainsi que dans les applications de douilles et de roulements à haute résistance où des charges élevées et lourdes sont présentes. Les autres applications de ces alliages sont les roues de pompe, les segments de piston et les raccords de vapeur. Par example, L’alliage de coulée de cuivre UNS C90500 est un alliage coulé de cuivre-étain, également connu sous le nom de métal à canon. Utilisé à l’origine principalement pour la fabrication d’armes à feu, il a été largement remplacé par l’acier. 

88%Cuivre dans le tableau périodique

dix%Étain dans le tableau périodique

2%Zinc dans le tableau périodique

  • Bronze au silicium. Le bronze au silicium contient généralement environ 96 % de cuivre. Le bronze au silicium a une composition de Si: 2,80–3,80 %, Mn: 0,50–1,30 %, Fe: 0,80 % max., Zn: 1,50 % max., Pb: 0,05 % max. Les bronzes au silicium ont une bonne combinaison de résistance et de ductilité, une bonne résistance à la corrosion et une soudabilité facile. Les bronzes au silicium ont été développés à l’origine pour l’industrie chimique en raison de leur résistance exceptionnelle à la corrosion dans de nombreux liquides. Ils sont utilisés dans des applications de produits architecturaux telles que:
    • Garnitures de porte,
    • Garde-corps,
    • Portes d’église,
    • Châssis de fenêtre.
  • Bronze d’aluminium. Les bronzes d’aluminium sont une famille d’alliages à base de cuivre offrant une combinaison de propriétés mécaniques et chimiques inégalées par toute autre série d’alliages. Ils contiennent environ 5 à 12% d’aluminium. De plus, les bronzes d’aluminium contiennent également du nickel, du silicium, du manganèse et du fer. Ils ont une excellente résistance, similaire à celle des aciers faiblement alliés, et une excellente résistance à la corrosion, en particulier dans l’eau de mer et les environnements similaires, où les alliages surpassent souvent de nombreux aciers inoxydables. Leur excellente résistance à la corrosion résulte de l’aluminium dans les alliages, qui réagit avec l’oxygène atmosphérique pour former une couche superficielle mince et dure d’alumine (oxyde d’aluminium) qui agit comme une barrière à la corrosion de l’alliage riche en cuivre. On les trouve sous forme forgée et moulée. Les bronzes d’aluminium sont généralement de couleur dorée.
    • Services généraux liés à l’eau de mer
    • Roulements
    • Raccords de tuyauterie
    • Pompes et composants de vannes
    • Échangeurs de chaleur
  • Bronze au béryllium. Le cuivre au béryllium, également connu sous le nom de bronze au béryllium, est un alliage de cuivre contenant 0,5 à 3 % de béryllium. Le cuivre au béryllium est le plus dur et le plus résistant de tous les alliages de cuivre (UTS jusqu’à 1 400 MPa), à l’état entièrement traité thermiquement et travaillé à froid. Il combine une résistance élevée avec des qualités non magnétiques et anti-étincelles et ses propriétés mécaniques sont similaires à celles de nombreux aciers alliés à haute résistance mais, par rapport aux aciers, il a une meilleure résistance à la corrosion. Il a une bonne conductivité thermique (210 W/m °C) 3 à 5 fois supérieure à celle de l’acier à outils. Ces alliages hautes performances sont utilisés depuis longtemps pour les outils anti-étincelles dans les industries minières (mines de charbon), gazières et pétrochimiques (plates-formes pétrolières). Des tournevis, des pinces, des clés, des ciseaux à froid, des couteaux et des marteaux en cuivre au béryllium sont disponibles pour ces environnements. En raison de l’excellente résistance à la fatigue,
  • Cloche en métal (bronze à haute teneur en étain). En général, les métaux de cloche se réfèrent généralement à des bronzes à haute teneur en étain qui sont une famille d’alliages à base de cuivre traditionnellement alliés à l’étain, généralement avec plus de 20% d’étain (généralement, 78% de cuivre, 22% d’étain en masse). Le métal de cloche est utilisé pour la coulée de cloches de haute qualité. La teneur en étain plus élevée augmente la rigidité du métal et augmente la résonance. Il a été constaté que l’augmentation de la teneur en étain augmente le temps de décroissance de la frappe de la cloche, rendant ainsi la cloche plus sonore. Les bronzes à haute teneur en étain se trouvent également dans les engrenages ainsi que dans les applications de douilles et de roulements à haute résistance où des charges élevées et lourdes sont présentes.

Utilisations et application des bronzes

Historiquement, l’alliage du cuivre avec un autre métal, par exemple l’étain pour fabriquer du bronze, a été pratiqué pour la première fois environ 4000 ans après la découverte de la fusion du cuivre, et environ 2000 ans après la généralisation du «bronze naturel». Une civilisation ancienne est définie comme étant à l’ âge du bronze soit en produisant du bronze en fondant son propre cuivre et en l’alliant avec de l’étain, de l’arsenic ou d’autres métaux. Les principales applications du cuivre sont les fils électriques (60 %), les toitures et la plomberie (20 %) et les machines industrielles (15 %).

palier en bronze
Palier en bronze

Le cuivre est principalement utilisé comme métal pur, mais lorsqu’une plus grande dureté est requise, il est utilisé dans des alliages tels que le laiton et le bronze (5 % de l’utilisation totale). Le cuivre et les alliages à base de cuivre dont les laitons (Cu-Zn) et les bronzes (Cu-Sn) sont largement utilisés dans différentes applications industrielles et sociétales. Certaines des utilisations courantes des alliages de laiton comprennent les bijoux de fantaisie, les serrures, les charnières, les engrenages, les roulements, les douilles de munitions, les radiateurs automobiles, les instruments de musique, les emballages électroniques et les pièces de monnaie. Le bronze, ou les alliages et mélanges de type bronze, ont été utilisés pour les pièces de monnaie sur une plus longue période. est encore largement utilisé aujourd’hui pour les ressorts, les roulements, les bagues, les roulements pilotes de transmission automobile et les raccords similaires, et est particulièrement courant dans les roulements des petits moteurs électriques.

Propriétés des bronzes

Les propriétés des matériaux sont des propriétés intensives, c’est-à-dire qu’elles sont indépendantes de la quantité de masse et peuvent varier d’un endroit à l’autre du système à tout moment. La base de la science des matériaux consiste à étudier la structure des matériaux et à les relier à leurs propriétés (mécaniques, électriques, etc.). Une fois qu’un spécialiste des matériaux connaît cette corrélation structure-propriété, il peut ensuite étudier les performances relatives d’un matériau dans une application donnée. Les principaux déterminants de la structure d’un matériau et donc de ses propriétés sont ses éléments chimiques constitutifs et la manière dont il a été transformé en sa forme finale.

Propriétés mécaniques des bronzes

Les matériaux sont fréquemment choisis pour diverses applications car ils présentent des combinaisons souhaitables de caractéristiques mécaniques. Pour les applications structurelles, les propriétés des matériaux sont cruciales et les ingénieurs doivent en tenir compte.

Force des bronzes

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime du bronze d’aluminium – UNS C95400 est d’environ 550 MPa.

La résistance à la traction ultime du bronze à l’étain – UNS C90500 – est d’environ 310 MPa.

La résistance à la traction ultime du cuivre béryllium – UNS C17200 est d’environ 1380 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Limite d’élasticité

La limite d’élasticité du bronze d’aluminium – UNS C95400 est d’environ 250 MPa.

La limite d’élasticité du bronze à l’étain – UNS C90500 – le bronze à canon est d’environ 150 MPa.

La limite d’élasticité du cuivre béryllium – UNS C17200 est d’environ 1100 MPa.

La limite d’ élasticité est le point sur une courbe contrainte-déformation qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young du bronze d’aluminium – UNS C95400 est d’environ 110 GPa.

Le module de Young du bronze à l’étain – UNS C90500 – bronze à canon est d’environ 103 GPa.

Le module de Young du cuivre béryllium – UNS C17200 est d’environ 131 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Dureté des bronzes

La dureté Brinell du bronze d’aluminium – UNS C95400 est d’environ 170 MPa. La dureté des bronzes d’aluminium augmente avec la teneur en aluminium (et autres alliages) ainsi qu’avec les contraintes causées par le travail à froid.

La dureté Brinell du bronze à l’étain – UNS C90500 – le bronze à canon est d’environ 75 BHN.

La dureté Rockwell du cuivre béryllium – UNS C17200 est d’environ 82 HRB.

Numéro de dureté Brinell

Le test de dureté Rockwell est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le nombre de dureté Rockwell. C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté HRA, HRB, HRC, etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale (cône diamant 120°) et une charge majeure de 150kg.

Propriétés thermiques des bronzes

Les propriétés thermiques des matériaux font référence à la réponse des matériaux aux changements de leur température et à l’application de chaleur. Lorsqu’un solide absorbe de l’énergie sous forme de chaleur, sa température augmente et ses dimensions augmentent. Mais différents matériaux réagissent différemment à l’application de chaleur.

La capacité calorifiquela dilatation thermique et la conductivité thermique sont des propriétés qui sont souvent critiques dans l’utilisation pratique des solides.

Point de fusion des bronzes

Le point de fusion du bronze d’aluminium – UNS C95400 est d’environ 1030°C.

Le point de fusion du bronze à l’étain – UNS C90500 – le bronze à canon est d’environ 1000 °C.

Le point de fusion du cuivre béryllium – UNS C17200 est d’environ 866 °C.

En général, la fusion est un changement de phase d’une substance de la phase solide à la phase liquide. Le point de fusion d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre.

Conductivité thermique des bronzes

La conductivité thermique du bronze d’aluminium – UNS C95400 est de 59 W/(mK).

La conductivité thermique du bronze à l’étain – UNS C90500 – bronze à canon est de 75 W/(mK).

La conductivité thermique du cuivre béryllium – UNS C17200 est de 115 W/(mK).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

[/lgc_column]

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Alliages de cuivre  » style= »plat » background= »#ffffff » color= »#606060″ size= »5″ radius= »10″ icon= »icône : lien » icon_color= »#5d5d5d » text_shadow= »0px 0px 0px #000000″ ][/su_button]

Nous espérons que cet article, Bronze, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.