Facebook Instagram Youtube Twitter

Qu’est-ce que le laiton – Définition

Le laiton est le terme générique désignant une gamme d’alliages cuivre-zinc. Le laiton peut être allié au zinc dans différentes proportions, ce qui donne un matériau aux propriétés mécaniques, anticorrosion et thermiques variables.

laitonLe laiton est le terme générique désignant une gamme d’ alliages cuivre-zinc. Le laiton peut être allié au zinc dans différentes proportions, ce qui donne un matériau aux propriétés mécaniques, anticorrosion et thermiques variables. Des quantités accrues de zinc confèrent au matériau une résistance et une ductilité améliorées. Les laitons ayant une teneur en cuivre supérieure à 63 % sont les plus ductiles de tous les alliages de cuivre et sont façonnés par des opérations complexes de formage à froid. Le laiton a une plus grande malléabilité que le bronze ou le zinc. Le point de fusion relativement bas du laiton et sa fluidité en font un matériau relativement facile à couler. Le laiton peut avoir une couleur de surface allant du rouge au jaune en passant par l’or et l’argent en fonction de la teneur en zinc. Certaines des utilisations courantes des alliages de laiton comprennent les bijoux de fantaisie, les serrures, les charnières, les engrenages, les roulements, les raccords de tuyaux, les douilles de munitions, les radiateurs automobiles, les instruments de musique, les emballages électroniques et les pièces de monnaie. Le laiton et le bronze sont des matériaux d’ingénierie courants dans l’architecture moderne et principalement utilisés pour les toitures et les revêtements de façade en raison de leur aspect visuel.

laiton propriétés densité résistance prix

Résumé

Nom Laiton
Phase à STP N/A
Densité 8530 kg/m3
Résistance à la traction ultime 315 MPa
Limite d’élasticité 95 MPa
Module de Young 110 GPa
Dureté Brinell 100 BHN
Point de fusion 677 °C
Conductivité thermique 120 W/mK
Capacité thermique 380 J/g·K
Prix 5 $/kg

cartouche en alliage de laitonPar exemple, l’alliage de laiton de cartouche UNS C26000 (70/30) appartient à la série de laiton jaune, qui a la ductilité la plus élevée. Les laitons de cartouche sont principalement formés à froid et ils peuvent également être facilement usinés, ce qui est nécessaire pour fabriquer des étuis de cartouche. Il peut être utilisé pour les noyaux et les réservoirs de radiateur, les coques de lampe de poche, les luminaires, les fixations, les serrures, les charnières, les composants de munitions ou les accessoires de plomberie.

cartouche en alliage de laiton

69%Cuivre dans le tableau périodique

29%Zinc dans le tableau périodique

1%Magnésium dans le tableau périodique

Propriétés du Laiton – Cartouche Laiton – UNS C26000

LaitonLes propriétés des matériaux sont des propriétés intensives, c’est-à-dire qu’elles sont indépendantes de la quantité de masse et peuvent varier d’un endroit à l’autre du système à tout moment. La base de la science des matériaux consiste à étudier la structure des matériaux et à les relier à leurs propriétés (mécaniques, électriques, etc.). Une fois qu’un spécialiste des matériaux connaît cette corrélation structure-propriété, il peut ensuite étudier les performances relatives d’un matériau dans une application donnée. Les principaux déterminants de la structure d’un matériau et donc de ses propriétés sont ses éléments chimiques constitutifs et la manière dont il a été transformé en sa forme finale.

Propriétés mécaniques du laiton – Cartouche Laiton – UNS C26000

Les matériaux sont fréquemment choisis pour diverses applications car ils présentent des combinaisons souhaitables de caractéristiques mécaniques. Pour les applications structurelles, les propriétés des matériaux sont cruciales et les ingénieurs doivent en tenir compte.

Résistance du laiton – Cartouche laiton – UNS C26000

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime du laiton de la cartouche – UNS C26000 est d’environ 315 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Limite d’élasticité

La limite d’élasticité du  laiton de la cartouche – UNS C26000 est d’environ 95 MPa.

La limite d’ élasticité est le point sur une courbe contrainte-déformation qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young du laiton de la cartouche – UNS C26000 est d’environ 110 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Dureté du laiton – Cartouche laiton – UNS C26000

La dureté Brinell du laiton de la cartouche – UNS C26000 est d’environ 100 MPa.

Numéro de dureté Brinell

Le test de dureté Rockwell est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le nombre de dureté Rockwell. C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté HRA, HRB, HRC  etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale (cône diamant 120°) et une charge majeure de 150kg.

Propriétés thermiques du laiton – Cartouche Laiton – UNS C26000

Les propriétés thermiques des matériaux font référence à la réponse des matériaux aux changements de leur thermodynamics/thermodynamic-properties/what-is-temperature-physics/ »>température et à l’application de chaleur. Lorsqu’un solide absorbe de thermodynamics/what-is-energy-physics/ »>l’énergie sous forme de chaleur, sa température augmente et ses dimensions augmentent. Mais différents matériaux réagissent différemment à l’application de chaleur.

La capacité calorifiquela dilatation thermique et la conductivité thermique sont des propriétés qui sont souvent critiques dans l’utilisation pratique des solides.

Point de fusion du laiton – Cartouche laiton – UNS C26000

Le point de fusion du laiton de la cartouche – UNS C26000 est d’environ 950 °C.

En général, la fusion est un changement de phase d’une substance de la phase solide à la phase liquide. Le point de fusion d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre.

Conductivité thermique du laiton – Cartouche laiton – UNS C26000

La conductivité thermique de la cartouche en laiton – UNS C26000 est de 120 W/(mK).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Conductivité électrique du laiton – Cartouche laiton – UNS C26000

La conductivité électrique de la cartouche en laiton – UNS C26000 est d’environ 30 % IACS (environ 17 MS/m).

La résistivité électrique et son inverse, la conductivité électrique, est une propriété fondamentale d’un matériau qui quantifie la force avec laquelle il résiste ou conduit le flux de courant électrique. Une faible résistivité indique un matériau qui permet facilement la circulation du courant électrique. Le symbole de la résistivité est généralement la lettre grecque ρ (rho). L’unité SI de résistivité électrique est l’ohmmètre (Ω⋅m). Notez que la résistivité électrique n’est pas la même chose que la résistance électrique. La résistance électrique est exprimée en Ohms. Alors que la résistivité est une propriété matérielle, la résistance est la propriété d’un objet.

[/lgc_column]

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Alliages de cuivre  » style= »plat » background= »#ffffff » color= »#606060″ size= »5″ radius= »10″ icon= »icône : lien » icon_color= »#5d5d5d » text_shadow= »0px 0px 0px #000000″ ][/su_button]

Nous espérons que cet article, Brass, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.