Facebook Instagram Youtube Twitter

Qu’est-ce que le recuit des cuves sous pression des réacteurs – Définition

Le recuit thermique (méthode « à sec ») de la cuve sous pression du réacteur est une méthode par laquelle la cuve sous pression (avec tous les composants internes du réacteur retirés) est chauffée jusqu’à une certaine température (généralement entre 420 et 460 °C) à l’aide d’un source de chaleur.

Le terme recuit thermique fait référence à un traitement thermique dans lequel un matériau est exposé à une température élevée pendant une période de temps prolongée, puis refroidi lentement. Ce processus modifie les propriétés physiques et parfois chimiques d’un matériau pour augmenter sa ductilité et réduire sa dureté, ce qui le rend plus maniable. Dans ce processus, les atomes migrent dans le réseau cristallin et le nombre de dislocations diminue, entraînant une modification de la ductilité et de la dureté. Le métal se débarrasse des contraintes et rend la structure du grain large et à bords doux de sorte que lorsque le métal est frappé ou stressé, il se bosse ou peut-être se plie, plutôt que de se casser. En règle générale, le recuit est effectué pour soulager les contraintes, augmenter la douceur, la ductilité et la ténacité; et/ou produire une microstructure spécifique.

Généralement, dans les aciers au carbone, le recuit produit une microstructure de ferrite-perlite. Les aciers peuvent être recuits pour faciliter le travail à froid ou l’usinage, pour améliorer les propriétés mécaniques ou électriques, ou pour favoriser la stabilité dimensionnelle. Les aciers de construction les plus couramment produits ont une microstructure mixte ferrite-perlite. Leurs applications incluent les poutres pour les ponts et les immeubles de grande hauteur, les plaques pour les navires et les barres d’armature pour les chaussées. Ces aciers sont relativement peu coûteux et sont produits dans des tonnages importants.

Tout cycle de recuit comprend trois étapes:

  • chauffer à la température désirée,
  • maintenir ou « tremper » à cette température,
  • refroidissement, généralement à température ambiante.

Le temps et la température de recuit sont des paramètres importants dans ces procédures. En particulier, la température cible définit le cycle thermique de recuit.

Recuit de la cuve sous pression du réacteur

matériaux pour la cuve sous pression du réacteurLe corps de la cuve du réacteur est construit en acier au carbone faiblement allié de haute qualité et toutes les surfaces qui entrent en contact avec le fluide de refroidissement du réacteur sont revêtues d’un minimum d’environ 3 à 10 mm d’ acier inoxydable austénitique afin de minimiser la corrosion.

Au cours de l’exploitation d’une centrale nucléaire, le matériau de la cuve sous pression du réacteur et le matériau des autres composants internes du réacteur sont exposés au rayonnement neutronique (en particulier aux neutrons rapides > 0,5 MeV), ce qui entraîne une fragilisation localisée de l’acier et des soudures dans le réacteur. zone du cœur du réacteur. Ce phénomène, appelé fragilisation par irradiation, se traduit par:

  • Augmentation constante du DBTT. Il est peu probable que le DBTT s’approche de la température de fonctionnement normale de l’acier. Cependant, il est possible que lors de l’arrêt du réacteur ou lors d’un refroidissement anormal, la température tombe en dessous de la valeur DBTT alors que la pression interne est encore élevée.
  • Baisse de l’énergie de fracture du plateau supérieur. Les effets du rayonnement se manifestent également par une baisse de l’énergie de rupture de l’étagère supérieure et une diminution de la ténacité à la rupture.

Tous ces effets doivent être surveillés par les opérateurs de la centrale. Par conséquent, les autorités de réglementation nucléaire exigent qu’un programme de surveillance des matériaux de la cuve du réacteur soit mené dans les réacteurs de puissance refroidis à l’eau.

Une fois qu’un matériau de RPV est dégradé par fragilisation par rayonnement (par exemple, augmentation significative de la température de transition ductile-fragile Charpy ou réduction de la ténacité à la rupture), le recuit thermique du RPV est le seul moyen de récupérer les propriétés de ténacité du matériau RPV.

Selon 10 CFR 50.66 – Exigences pour le recuit thermique de la cuve sous pression du réacteur:

« Pour les réacteurs nucléaires à eau légère où le rayonnement neutronique a réduit la ténacité à la rupture des matériaux de la cuve du réacteur, un recuit thermique peut être appliqué à la cuve du réacteur pour récupérer la ténacité à la rupture du matériau. »

 Le recuit thermique (méthode « à sec ») de la cuve sous pression du réacteur est une méthode par laquelle la cuve sous pression (avec tous les composants internes du réacteur retirés) est chauffée jusqu’à une certaine température (généralement entre 420 et 460 °C) en utilisant une source de chaleur externe (radiateurs électriques, air chaud), maintenue pendant une période donnée (par exemple 100 à 200 heures) puis refroidie lentement. L’équipement de recuit est généralement un four annulaire avec des éléments chauffants sur sa surface externe. La puissance de sortie des appareils de chauffage installés peut atteindre jusqu’à 1 MWe. Il a été montré que pour les matériaux spécialement fabriqués, l’étagère supérieure récupérait 100 % après 24 heures de recuit et plus rapidement que la température de transition. Un recuit de 168 heures a permis de récupérer 90 % du décalage de température de transition.

Recuit humide

Il existe également une possibilité de la méthode de recuit dite « humide » qui a été appliquée aux États-Unis et en Belgique. Le recuit à cette température ~ 340 °C a été atteint sans chauffage externe, mais en augmentant la température du liquide de refroidissement obtenue par l’énergie des pompes de circulation du circuit primaire. Ce type de recuit ne fournit qu’une récupération partielle du matériau en raison de la limitation de la température maximale.

Référence spéciale : Recuit et re-fragilisation des matériaux de la cuve sous pression du réacteur. rapport AMES N°19 ; ISSN 1018-5593. Communautés européennes, 2008.

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Recuit thermique [/su_button ]

Nous espérons que cet article, Reactor Pressure Vessel Recuit, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.