Endurecimento de Superfície – Endurecimento de Caso
O endurecimento da caixa ou endurecimento da superfície é o processo no qual a dureza da superfície (caixa) de um objeto é aprimorada, enquanto o núcleo interno do objeto permanece elástico e resistente. Após esse processo, a dureza da superfície, a resistência ao desgaste e a vida útil à fadiga são aprimoradas. Isso é realizado por vários processos, como um processo de carburação ou nitretação, pelo qual um componente é exposto a uma atmosfera carbonácea ou nitrogenada em temperatura elevada. Como foi escrito, duas características principais do material são influenciadas:
- Dureza e resistência ao desgaste são significativamente melhoradas. Na ciência dos materiais, a dureza é a capacidade de resistir à indentação da superfície (deformação plástica localizada) e arranhões. A dureza é provavelmente a propriedade do material menos definida porque pode indicar resistência a arranhões, resistência à abrasão, resistência à indentação ou mesmo resistência à modelagem ou deformação plástica localizada. A dureza é importante do ponto de vista da engenharia porque a resistência ao desgaste por fricção ou erosão por vapor, óleo e água geralmente aumenta com a dureza.
- A tenacidade não é influenciada negativamente. Tenacidade é a capacidade de um material de absorver energia e deformar plasticamente sem fraturar. Uma definição de tenacidade (para alta taxa de deformação, tenacidade à fratura) é que é uma propriedade indicativa da resistência de um material à fratura quando uma trinca (ou outro defeito de concentração de tensão) está presente.
Para ferro ou aço com baixo teor de carbono, que tem baixa ou nenhuma temperabilidade própria, o processo de endurecimento envolve a infusão de carbono ou nitrogênio adicional na camada superficial. O endurecimento da caixa é útil em peças como um came ou engrenagem de anel que deve ter uma superfície muito dura para resistir ao desgaste, juntamente com um interior resistente para resistir ao impacto que ocorre durante a operação. Além disso, o endurecimento superficial do aço tem uma vantagem sobre o endurecimento direto (isto é, o endurecimento uniforme do metal em toda a peça), porque os aços de baixo carbono e médio carbono, menos caros, podem ser endurecidos superficialmente sem os problemas de distorção e rachaduras associados ao endurecimento. através do endurecimento de seções espessas. Uma camada de superfície externa rica em carbono ou nitrogênio (ou caso) é introduzido por difusão atômica da fase gasosa. A caixa tem normalmente cerca de 1 mm de profundidade e é mais dura do que o núcleo interno do material.
Vá em frente
A boretação, também chamada de boronização, é um processo de difusão termoquímica semelhante à nitrocarbonetação, no qual os átomos de boro se difundem no substrato para produzir camadas superficiais duras e resistentes ao desgaste. O processo requer alta temperatura de tratamento (1073-1323 K) e longa duração (1-12 h), podendo ser aplicado a uma ampla gama de materiais como aços, ferro fundido, cermets e ligas não ferrosas. A superfície resultante contém boretos de metal, como boretos de ferro, boretos de níquel e boretos de cobalto. Como materiais puros, esses boretos têm dureza e resistência ao desgaste extremamente altas.
Suas propriedades favoráveis se manifestam mesmo quando são uma pequena fração do sólido a granel. As propriedades das camadas de boreto são geralmente superiores àquelas formadas por nitretação e carburação, principalmente em termos de dureza. A maioria das superfícies de aço boretado terá durezas de camada de boreto de ferro variando de 1200-1600 HV. Superligas à base de níquel como Inconel e Hastalloys normalmente têm durezas de camada de boreto de níquel de 1700-2300 HV. A dureza da camada de boreto pode ser mantida em temperaturas mais altas do que, por exemplo, nos casos nitretados. Por outro lado, tanto a cementação a gás quanto a nitretação a plasma têm vantagem sobre a boronização porque esses dois processos oferecem custos operacionais e de manutenção reduzidos, requerem tempos de processamento mais curtos e são relativamente fáceis de operar. A boretação é normalmente usada para muitas aplicações de alto desempenho, como automotiva, máquinas-ferramentas, aeroespacial, ferramentas hidráulicas, agricultura e indústrias de defesa, etc.
Outros métodos de endurecimento
O endurecimento por tratamento de superfície pode ser classificado ainda como tratamentos de difusão ou tratamentos de aquecimento localizado. Os métodos de difusão introduzem elementos de liga que entram na superfície por difusão, seja como agentes de solução sólida ou como agentes de endurecimento que auxiliam na formação de martensita durante a têmpera subsequente. Neste processo, a concentração do elemento de liga é aumentada na superfície de um componente de aço. Os métodos de difusão incluem:
- Carburação. A cementação é um processo de cementação no qual a concentração de carbono na superfície de uma liga ferrosa (geralmente um aço com baixo teor de carbono) é aumentada pela difusão do ambiente circundante. A cementação produz uma superfície de produto dura e altamente resistente ao desgaste (profundidades médias) com excelente capacidade de carga de contato, boa resistência à fadiga por flexão e boa resistência à apreensão.
- Nitretação. A nitretação é um processo de cementação no qual a concentração de nitrogênio na superfície de um ferroso é aumentada por difusão do ambiente circundante para criar uma superfície endurecida. A nitretação produz uma superfície dura e altamente resistente ao desgaste (profundidades de caixa rasas) do produto com capacidade razoável para carga de contato, boa resistência à fadiga por flexão e excelente resistência à apreensão.
- Entediante. A boretação, também chamada de borotização, é um processo de difusão termoquímica semelhante à nitrocarbonetação, no qual os átomos de boro se difundem no substrato para produzir camadas superficiais duras e resistentes ao desgaste. O processo requer alta temperatura de tratamento (1073-1323 K) e longa duração (1-12 h), podendo ser aplicado a uma ampla gama de materiais como aços, ferro fundido, cermets e ligas não ferrosas.
- Endurecimento de titânio-carbono e nitreto de titânio. Nitreto de titânio (um material cerâmico extremamente duro), ou revestimentos de carboneto de titânio podem ser usados nas ferramentas feitas deste tipo de aço através do processo de deposição física de vapor para melhorar o desempenho e a vida útil da ferramenta. O TiN tem uma dureza Vickers de 1800–2100 e tem uma cor dourada metálica.
Métodos de aquecimento localizado para cementação incluem:
- Endurecimento por chama. O endurecimento por chama é uma técnica de endurecimento de superfície que usa uma única tocha com uma cabeça especialmente projetada para fornecer um meio muito rápido de aquecer o metal, que é então resfriado rapidamente, geralmente usando água. Isso cria uma “caixa” de martensita na superfície, enquanto o núcleo interno do objeto permanece elástico e resistente. É uma técnica semelhante ao endurecimento por indução. Um teor de carbono de 0,3–0,6% em peso C é necessário para este tipo de endurecimento.
- Endurecimento por indução. O endurecimento por indução é uma técnica de endurecimento de superfície que usa bobinas de indução para fornecer um meio muito rápido de aquecer o metal, que é então resfriado rapidamente, geralmente usando água. Isso cria uma “caixa” de martensita na superfície. Um teor de carbono de 0,3–0,6% em peso C é necessário para este tipo de endurecimento.
- Endurecimento a laser. O endurecimento a laser é uma técnica de endurecimento de superfície que usa um feixe de laser para fornecer um meio muito rápido de aquecimento do metal, que é então resfriado rapidamente (geralmente por auto-têmpera). Isso cria uma “caixa” de martensita na superfície, enquanto o núcleo interno do objeto permanece elástico e resistente.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
Esperamos que este artigo, Boridagem – Vantagens e Aplicação, ajude você. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.