Facebook Instagram Youtube Twitter

O que é Bronze Estanho – Definição

Bronzes de estanho são uma família de ligas à base de cobre tradicionalmente ligadas ao estanho, geralmente com cerca de 12 a 12,5% de estanho. A adição de pequenas quantidades (0,01–0,45) de fósforo aumenta ainda mais a dureza, resistência à fadiga e resistência ao desgaste.

Os bronzes são uma família de ligas à base de cobre tradicionalmente ligadas ao estanho, mas podem referir-se a ligas de cobre e outros elementos (por exemplo, alumínio, silício e níquel). Os bronzes são um pouco mais fortes do que os latões, mas ainda apresentam um alto grau de resistência à corrosão. Geralmente são usados ​​quando, além da resistência à corrosão, são exigidas boas propriedades de tração. Por exemplo, o cobre berílio atinge a maior resistência (até 1400 MPa) de qualquer liga à base de cobre.

Historicamente, a liga de cobre com outro metal, por exemplo estanho para fazer bronze, foi praticada pela primeira vez cerca de 4000 anos após a descoberta da fundição de cobre e cerca de 2000 anos depois que o “bronze natural” entrou em uso geral. Uma civilização antiga é definida como estando na Idade do Bronze, seja produzindo bronze por fundição de seu próprio cobre e liga com estanho, arsênico ou outros metais. Bronze, ou ligas e misturas semelhantes ao bronze, foram usadas para moedas por um período mais longo. Os bronzes ainda são amplamente usados ​​hoje em dia para molas, rolamentos, buchas, rolamentos piloto de transmissão de automóveis e acessórios semelhantes, e são particularmente comuns nos rolamentos de pequenos motores elétricos. Latão e bronze são materiais de engenharia comuns na arquitetura moderna e usados ​​principalmente para coberturas e revestimento de fachadas devido à sua aparência visual.

Bronzes de Estanho

Em geral, os bronzes são uma família de ligas à base de cobre tradicionalmente ligadas ao estanho, geralmente com cerca de 12 a 12,5% de estanho. A adição de pequenas quantidades (0,01–0,45) de fósforo aumenta ainda mais a dureza, resistência à fadiga e resistência ao desgaste. A adição dessas ligas leva a aplicações como molas, fixadores, fixações de alvenaria, eixos, fusos de válvulas, engrenagens e rolamentos. O bronze também é o metal preferido para sinos na forma de uma liga de bronze com alto teor de estanho conhecida coloquialmente como metal de sino, que tem cerca de 23% de estanho. As ligas de bronze com alto teor de estanho também são normalmente encontradas em engrenagens, bem como em aplicações de buchas e rolamentos de alta resistência, onde cargas pesadas e de alta resistência estão presentes. Outras aplicações para essas ligas são impulsores de bombas, anéis de pistão e conexões de vapor. Por exemplo, liga de fundição de cobre UNS C90500 é uma liga fundida de cobre-estanho, também conhecida como metal de canhão. Originalmente usado principalmente para fabricar armas, foi amplamente substituído pelo aço.

bronze

Usos e Aplicação de Bronzes

Historicamente, a liga de cobre com outro metal, por exemplo estanho para fazer bronze, foi praticada pela primeira vez cerca de 4000 anos após a descoberta da fundição de cobre e cerca de 2000 anos depois que o “bronze natural” entrou em uso geral. Uma civilização antiga é definida como estando na Idade do Bronze, seja produzindo bronze por fundição de seu próprio cobre e liga com estanho, arsênico ou outros metais. As principais aplicações do cobre são fios elétricos (60%), telhados e encanamentos (20%) e maquinário industrial (15%).

rolamento de bronze
rolamento de bronze

O cobre é usado principalmente como metal puro, mas quando maior dureza é necessária, ele é colocado em ligas como latão e bronze (5% do uso total). Cobre e ligas à base de cobre, incluindo latão (Cu-Zn) e bronze (Cu-Sn) são amplamente utilizados em diferentes aplicações industriais e sociais. Alguns dos usos comuns para ligas de latão incluem bijuterias, fechaduras, dobradiças, engrenagens, rolamentos, caixas de munição, radiadores automotivos, instrumentos musicais, embalagens eletrônicas e moedas. Bronze, ou ligas e misturas semelhantes ao bronze, foram usadas para moedas por um período mais longo. ainda hoje é amplamente utilizado para molas, rolamentos, buchas, rolamentos piloto de transmissão de automóveis e acessórios semelhantes, e é particularmente comum nos rolamentos de pequenos motores elétricos.

Propriedades do Bronze Estanho

As propriedades dos materiais são propriedades intensivas, ou seja, independem da quantidade de massa e podem variar de um lugar para outro dentro do sistema a qualquer momento. A base da ciência dos materiais envolve estudar a estrutura dos materiais e relacioná-los com suas propriedades (mecânicas, elétricas, etc.). Uma vez que um cientista de materiais conheça essa correlação estrutura-propriedade, ele poderá estudar o desempenho relativo de um material em uma determinada aplicação. Os principais determinantes da estrutura de um material e, portanto, de suas propriedades são seus elementos químicos constituintes e a maneira como ele foi processado em sua forma final.

Propriedades Mecânicas do Bronze Estanho

Os materiais são freqüentemente escolhidos para várias aplicações porque possuem combinações desejáveis ​​de características mecânicas. Para aplicações estruturais, as propriedades do material são cruciais e os engenheiros devem levá-las em consideração.

Força do Bronze de Estanho

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou mudança nas dimensões do material. A resistência de um material é sua capacidade de suportar essa carga aplicada sem falha ou deformação plástica.

Resistência à tração

A resistência à tração final do bronze de estanho – UNS C90500 – metal de canhão é de cerca de 310 MPa.

Resistência ao escoamento - Resistência à tração máxima - Tabela de materiaisresistência à tração final é o máximo na curva de tensão-deformação de engenharia. Isso corresponde à tensão máxima que pode ser sustentado por uma estrutura em tensão. A resistência à tração final é muitas vezes abreviada para “resistência à tração” ou mesmo para “o máximo”. Se essa tensão for aplicada e mantida, ocorrerá fratura. Freqüentemente, esse valor é significativamente maior do que o limite de escoamento (até 50 a 60 por cento a mais do que o rendimento de alguns tipos de metais). Quando um material dúctil atinge sua resistência máxima, ele sofre estricção onde a área da seção transversal é reduzida localmente. A curva tensão-deformação não contém tensão maior do que a resistência máxima. Mesmo que as deformações possam continuar a aumentar, a tensão geralmente diminui após o limite de resistência ter sido alcançado. É uma propriedade intensiva; portanto, seu valor não depende do tamanho do corpo de prova. Porém, depende de outros fatores, como o preparo do corpo de prova, temperatura do ambiente de teste e do material. A resistência máxima à tração varia de 50 MPa para um alumínio até 3000 MPa para aços de alta resistência.

Força de Rendimento

A resistência ao escoamento do bronze de estanho – UNS C90500 – metal de canhão é de cerca de 150 MPa.

ponto de escoamento é o ponto em uma curva tensão-deformação que indica o limite do comportamento elástico e o início do comportamento plástico. Força de rendimento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde começa a deformação não linear (elástica + plástica). Antes do ponto de escoamento, o material se deformará elasticamente e retornará à sua forma original quando a tensão aplicada for removida. Uma vez ultrapassado o ponto de escoamento, alguma fração da deformação será permanente e irreversível. Alguns aços e outros materiais exibem um comportamento denominado fenômeno do ponto de escoamento. As resistências ao escoamento variam de 35 MPa para um alumínio de baixa resistência a mais de 1400 MPa para aços de resistência muito alta.

Módulo de elasticidade de Young

O módulo de elasticidade de Young do bronze de estanho – UNS C90500 – gun metal é de cerca de 103 GPa.

módulo de elasticidade de Young é o módulo de elasticidade para tensão de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração. Até uma tensão limite, um corpo poderá recuperar suas dimensões com a retirada da carga. As tensões aplicadas fazem com que os átomos em um cristal se movam de sua posição de equilíbrio. Todos os átomos são deslocados na mesma quantidade e ainda mantêm sua geometria relativa. Quando as tensões são removidas, todos os átomos retornam às suas posições originais e nenhuma deformação permanente ocorre. De acordo com a lei de Hooke, a tensão é proporcional à deformação (na região elástica), e a inclinação é o módulo de Young. O módulo de Young é igual à tensão longitudinal dividida pela deformação.

Dureza do bronze estanho

A dureza Brinell do bronze de estanho – UNS C90500 – metal de canhão é de aproximadamente 75 BHN.

número de dureza Brinell

O teste de dureza Rockwell é um dos testes de dureza de indentação mais comuns, que foi desenvolvido para testes de dureza. Em contraste com o teste Brinell, o testador Rockwell mede a profundidade de penetração de um penetrador sob uma grande carga (carga principal) em comparação com a penetração feita por uma pré-carga (carga menor). A carga menor estabelece a posição zero. A carga principal é aplicada e, em seguida, removida, mantendo a carga secundária. A diferença entre a profundidade de penetração antes e depois da aplicação da carga principal é usada para calcular o número de dureza Rockwell. Ou seja, a profundidade de penetração e a dureza são inversamente proporcionais. A principal vantagem da dureza Rockwell é sua capacidade de exibir valores de dureza diretamente. O resultado é um número adimensional anotado como HRA, HRB, HRC, etc., onde a última letra é a respectiva escala Rockwell.

O teste Rockwell C é realizado com um penetrador Brale (cone de diamante de 120°) e uma carga maior de 150kg.

Propriedades Térmicas do Bronze Estanho

As propriedades térmicas dos materiais referem-se à resposta dos materiais às mudanças de temperatura e à aplicação de calor. À medida que um sólido absorve energia na forma de calor, sua temperatura aumenta e suas dimensões aumentam. Mas diferentes materiais reagem à aplicação de calor de forma diferente.

A capacidade térmicaa expansão térmica e a condutividade térmica são propriedades frequentemente críticas no uso prático de sólidos.

Ponto de Fusão do Bronze Estanho

O ponto de fusão do estanho-bronze – UNS C90500 – gun metal é de cerca de 1000°C.

Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a fase líquida. O ponto de fusão de uma substância é a temperatura na qual ocorre essa mudança de fase. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio.

Condutividade Térmica do Bronze Estanho

A condutividade térmica do bronze de estanho – UNS C90500 – metal de canhão é de 75 W/(mK).

As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.

A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. Em geral:

condutividade térmica - definição

A maioria dos materiais são quase homogêneos, portanto podemos geralmente escrever k = k (T). Definições semelhantes estão associadas às condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.

Referências:
Ciência dos Materiais:

Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Veja acima:
Bronze

Esperamos que este artigo, Bronze Estanho, ajude você. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.