Facebook Instagram Youtube Twitter

Qual é a força das ligas de magnésio – Definição

Resistência das Ligas de Magnésio. As ligas de magnésio são materiais relativamente fortes e leves. A resistência à tração final do Elektron 21 – UNS M12310 é de cerca de 280 MPa.

Ligas de magnésioLigas de magnésio são misturas de magnésio e outros metais de liga, geralmente alumínio, zinco, silício, manganês, cobre e zircônio. Como a característica mais notável do magnésio é sua densidade, 1,7 g/cm3, suas ligas são usadas onde o peso leve é ​​uma consideração importante (por exemplo, em componentes de aeronaves). O magnésio tem o ponto de fusão mais baixo (923 K (1202°F)) de todos os metais alcalino-terrosos. O magnésio puro tem uma estrutura cristalina HCP, é relativamente macio e tem um baixo módulo de elasticidade: 45 GPa. As ligas de magnésio também possuem uma estrutura treliçada hexagonal, que afeta as propriedades fundamentais dessas ligas. À temperatura ambiente, o magnésio e suas ligas são difíceis de realizar trabalho a frio devido ao fato de que a deformação plástica da rede hexagonal é mais complicada do que em metais de rede cúbica como alumínio, cobre e aço. Portanto, as ligas de magnésio são normalmente usadas como ligas fundidas. Apesar da natureza reativa do pó de magnésio puro, o magnésio metálico e suas ligas têm boa resistência à corrosão.

O alumínio é o elemento de liga mais comum. Alumínio, zinco, zircônio e tório promovem o endurecimento por precipitação: o manganês melhora a resistência à corrosão; e o estanho melhora a fundibilidade.

Resistência das Ligas de Magnésio

Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou mudança nas dimensões do material. A resistência de um material é sua capacidade de suportar essa carga aplicada sem falha ou deformação plástica.

Resistência à tração

A resistência à tração final do Elektron 21 – UNS M12310 é de cerca de 280 MPa.

Resistência ao escoamento - Resistência à tração máxima - Tabela de materiaisresistência à tração final é o máximo na curva de tensão-deformação de engenharia. Isso corresponde à tensão máxima que pode ser sustentado por uma estrutura em tensão. A resistência à tração final é muitas vezes abreviada para “resistência à tração” ou mesmo para “o máximo”. Se essa tensão for aplicada e mantida, ocorrerá fratura. Freqüentemente, esse valor é significativamente maior do que o limite de escoamento (até 50 a 60 por cento a mais do que o rendimento de alguns tipos de metais). Quando um material dúctil atinge sua resistência máxima, ele sofre estricção onde a área da seção transversal é reduzida localmente. A curva tensão-deformação não contém tensão maior do que a resistência máxima. Mesmo que as deformações possam continuar a aumentar, a tensão geralmente diminui após o limite de resistência ter sido alcançado. É uma propriedade intensiva; portanto, seu valor não depende do tamanho do corpo de prova. Porém, depende de outros fatores, como o preparo do corpo de prova, temperatura do ambiente de teste e do material. A resistência máxima à tração varia de 50 MPa para um alumínio até 3000 MPa para aços de alta resistência.

Força de Rendimento

A resistência ao escoamento do Elektron 21 – UNS M12310 é de cerca de 145 MPa.

ponto de escoamento é o ponto em uma curva tensão-deformação que indica o limite do comportamento elástico e o início do comportamento plástico. Força de rendimento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde começa a deformação não linear (elástica + plástica). Antes do ponto de escoamento, o material se deformará elasticamente e retornará à sua forma original quando a tensão aplicada for removida. Uma vez ultrapassado o ponto de escoamento, alguma fração da deformação será permanente e irreversível. Alguns aços e outros materiais exibem um comportamento denominado fenômeno do ponto de escoamento. As resistências ao escoamento variam de 35 MPa para um alumínio de baixa resistência a mais de 1400 MPa para aços de resistência muito alta.

Módulo de elasticidade de Young

O módulo de elasticidade de Young do Elektron 21 – UNS M12310 é de cerca de 45 GPa.

módulo de elasticidade de Young é o módulo de elasticidade para tensão de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração. Até uma tensão limite, um corpo poderá recuperar suas dimensões com a retirada da carga. As tensões aplicadas fazem com que os átomos em um cristal se movam de sua posição de equilíbrio. Todos os átomos são deslocados na mesma quantidade e ainda mantêm sua geometria relativa. Quando as tensões são removidas, todos os átomos retornam às suas posições originais e nenhuma deformação permanente ocorre. De acordo com a lei de Hooke, a tensão é proporcional à deformação (na região elástica), e a inclinação é o módulo de Young. O módulo de Young é igual à tensão longitudinal dividida pela deformação.

 

Referências:
Ciência dos Materiais:

Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Veja acima:
Ligas de magnésio

Esperamos que este artigo, Força das Ligas de Magnésio, o ajude. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.