Facebook Instagram Youtube Twitter

¿Qué es Band Gap – Brecha de energía en semiconductores – Definición

En la física del estado sólido, esta brecha de energía o banda prohibida es un rango de energía entre la banda de valencia y la banda de conducción donde los estados de electrones están prohibidos. Propiedades del material [/ su_quote]

detectores de semiconductores - tabla de parámetrosEl nombre semiconductor proviene del hecho de que estos materiales tienen una conductividad eléctrica entre la de un metal, como el cobre, oro, etc. y un aislante, como el vidrio. Tienen una brecha de energía de menos de 4eV (aproximadamente 1eV). En la física del estado sólido, esta brecha de energía o banda prohibida es un rango de energía entre la banda de valencia y la banda de conducción donde los estados de electrones están prohibidos. Las propiedades de los semiconductores están determinadas por la brecha de energía entre las bandas de valencia y conducción. Para entender qué es un semiconductor, tenemos que definir estos términos.

En la física del estado sólido, la brecha de energía o la brecha de banda es un rango de energía entre la banda de valencia y la banda de conducción donde los estados de electrones están prohibidos. A diferencia de los conductores, los electrones en un semiconductor deben obtener energía (por ejemplo, de radiación ionizante) para cruzar la banda prohibida y alcanzar la banda de conducción. Los huecos de las bandas son naturalmente diferentes para diferentes materiales. Por ejemplo, el diamante es un semiconductor de banda ancha (E gap  = 5,47 eV) con un alto potencial como material de dispositivo electrónico en muchos dispositivos. Por otro lado, el germanio tiene una pequeña energía de banda prohibida (E gap = 0,67 eV), que requiere operar el detector a temperaturas criogénicas.

[/ lgc_column]

References:

Protección de radiación:

  1. Knoll, Glenn F., Detección y medición de radiación, cuarta edición, Wiley, 8/2010. ISBN-13: 978-0470131480.
  2. Stabin, Michael G., Protección radiológica y dosimetría: Introducción a la física de la salud, Springer, 10/2010. ISBN-13: 978-1441923912.
  3. Martin, James E., Física para la protección radiológica, tercera edición, Wiley-VCH, 4/2013. ISBN-13: 978-3527411764.
  4. USNRC, CONCEPTOS DE REACTORES NUCLEARES
  5. Departamento de Energía, Instrumentación y Control de EE. UU. DOE Fundamentals Handbook, Volumen 2 de 2. Junio ​​de 1992.

Física nuclear y de reactores:

  1. JR Lamarsh, Introducción a la teoría de los reactores nucleares, 2ª ed., Addison-Wesley, Reading, MA (1983).
  2. JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
  3. WM Stacey, Física de reactores nucleares, John Wiley & Sons, 2001, ISBN: 0-471-39127-1.
  4. Glasstone, Sesonske. Ingeniería de Reactores Nucleares: Ingeniería de Sistemas de Reactores, Springer; 4a edición, 1994, ISBN: 978-0412985317
  5. WSC Williams. Física nuclear y de partículas. Prensa de Clarendon; 1 edición, 1991, ISBN: 978-0198520467
  6. GRKeepin. Física de la cinética nuclear. Addison-Wesley Pub. Co; 1a edición, 1965
  7. Robert Reed Burn, Introducción a la operación de reactores nucleares, 1988.
  8. Departamento de Energía, Física Nuclear y Teoría de Reactores de EE. UU. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
  9. Paul Reuss, Física de neutrones. EDP ​​Sciences, 2008. ISBN: 978-2759800414.

[/ su_spoiler]

[/ lgc_column]
[ / lgc_column]

Ver también:

Propiedades de los semiconductores [/ su_button] [ / lgc_column]

[/ lgc_column]

Esperamos que este artículo, Band Gap - Energy Gap in Semiconductors , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.