Facebook Instagram Youtube Twitter

Oxígeno y Flúor – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del oxígeno y el flúor, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Oxígeno vs flúor.

oxígeno y flúor - comparación

Comparar oxígeno con otro elemento

Sodio - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Silicio - Propiedades - Precio - Aplicaciones - Producción

Azufre - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Helio - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Berilio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Compara el flúor con otro elemento

Cloro - Propiedades - Precio - Aplicaciones - Producción

Neón - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Oxígeno y Flúor: acerca de los elementos

Oxígeno

El oxígeno es un gas reactivo incoloro e inodoro, el elemento químico del número atómico 8 y el componente vital del aire. Es un miembro del grupo calcógeno en la tabla periódica, un no metal altamente reactivo y un agente oxidante que forma fácilmente óxidos con la mayoría de los elementos así como con otros compuestos. En masa, el oxígeno es el tercer elemento más abundante del universo, después del hidrógeno y el helio.

Flúor

El flúor es el halógeno más ligero y existe como un gas diatómico amarillo pálido altamente tóxico en condiciones estándar. Como elemento más electronegativo, es extremadamente reactivo: casi todos los demás elementos, incluidos algunos gases nobles, forman compuestos con flúor.

Oxígeno en la tabla periódica

Flúor en la tabla periódica

Fuente: www.luciteria.com

Oxígeno y Flúor: aplicaciones

Oxígeno

Los usos comunes del oxígeno incluyen la producción de acero, plásticos y textiles, soldadura fuerte, soldadura y corte de aceros y otros metales, propulsor de cohetes, terapia de oxígeno y sistemas de soporte vital en aviones, submarinos, vuelos espaciales y buceo. La fundición de mineral de hierro en acero consume el 55% del oxígeno producido comercialmente. En este proceso, el oxígeno se inyecta a través de una lanza de alta presión en el hierro fundido, que elimina las impurezas de azufre y el exceso de carbono como los respectivos óxidos, dióxido de azufre y dióxido de carbono. La absorción de oxígeno del aire es el propósito esencial de la respiración, por lo que la suplementación con oxígeno se usa en medicina. El tratamiento no solo aumenta los niveles de oxígeno en la sangre del paciente, sino que tiene el efecto secundario de disminuir la resistencia al flujo sanguíneo en muchos tipos de pulmones enfermos, lo que alivia la carga de trabajo del corazón.

Flúor

Debido al costo de refinar el flúor puro, la mayoría de las aplicaciones comerciales utilizan compuestos de flúor, y aproximadamente la mitad de la fluorita extraída se utiliza en la fabricación de acero. El resto de la fluorita se convierte en fluoruro de hidrógeno corrosivo en ruta a varios fluoruros orgánicos, o en criolita, que juega un papel clave en el refinado del aluminio. La mayoría de los procesos comerciales de enriquecimiento de uranio (difusión gaseosa y método de centrifugación de gas) requieren que el uranio esté en forma gaseosa, por lo que el concentrado de óxido de uranio debe convertirse primero en hexafluoruro de uranio, que es un gas a temperaturas relativamente bajas. Las moléculas que contienen un enlace carbono-flúor a menudo tienen una estabilidad química y térmica muy alta; sus principales usos son como refrigerantes, aislamiento eléctrico y utensilios de cocina, el último como PTFE (teflón).

Oxígeno y Flúor: comparación en la tabla

Elemento Oxígeno Flúor
Densidad 0,00125 g / cm3 0,0017 g / cm3
Resistencia a la tracción N / A N / A
Límite de elastacidad N / A N / A
Módulo de Young N / A N / A
Escala de Mohs N / A N / A
Dureza Brinell N / A N / A
Dureza Vickers N / A N / A
Punto de fusion -209,9 ° C -219,8 ° C
Punto de ebullición -195,8 ° C -188,1 ° C
Conductividad térmica 0,02598 W / mK 0,0279 W / mK
Coeficiente de expansión térmica N / A N / A
Calor especifico 1,04 J / g K 0,82 J / g K
Calor de fusión (N2) 0,7204 kJ / mol 0,2552 kJ / mol
Calor de vaporización (N2) 5,56 kJ / mol 3,2698 kJ / mol

Oxígeno y Silicio – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del oxígeno y el silicio, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Oxígeno vs silicio.

oxígeno y silicio - comparación

Comparar oxígeno con otro elemento

Sodio - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Silicio - Propiedades - Precio - Aplicaciones - Producción

Azufre - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Helio - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Berilio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Comparar el silicio con otro elemento

Litio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Sodio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Arsénico - Propiedades - Precio - Aplicaciones - Producción

Germanio - Propiedades - Precio - Aplicaciones - Producción

Cobre - Propiedades - Precio - Aplicaciones - Producción

Oxígeno y Silicio: acerca de los elementos

Oxígeno

El oxígeno es un gas reactivo incoloro e inodoro, el elemento químico del número atómico 8 y el componente vital del aire. Es un miembro del grupo calcógeno en la tabla periódica, un no metal altamente reactivo y un agente oxidante que forma fácilmente óxidos con la mayoría de los elementos así como con otros compuestos. En masa, el oxígeno es el tercer elemento más abundante del universo, después del hidrógeno y el helio.

Silicio

El silicio es un sólido cristalino duro y quebradizo con un brillo metálico gris azulado, es un metaloide y semiconductor tetravalente.

Oxígeno en la tabla periódica

Silicio en la tabla periódica

Fuente: www.luciteria.com

Oxígeno y Silicio: aplicaciones

Oxígeno

Los usos comunes del oxígeno incluyen la producción de acero, plásticos y textiles, soldadura fuerte, soldadura y corte de aceros y otros metales, propulsor de cohetes, terapia de oxígeno y sistemas de soporte vital en aviones, submarinos, vuelos espaciales y buceo. La fundición de mineral de hierro en acero consume el 55% del oxígeno producido comercialmente. En este proceso, el oxígeno se inyecta a través de una lanza de alta presión en el hierro fundido, que elimina las impurezas de azufre y el exceso de carbono como los respectivos óxidos, dióxido de azufre y dióxido de carbono. La absorción de oxígeno del aire es el propósito esencial de la respiración, por lo que la suplementación con oxígeno se usa en medicina. El tratamiento no solo aumenta los niveles de oxígeno en la sangre del paciente, sino que tiene el efecto secundario de disminuir la resistencia al flujo sanguíneo en muchos tipos de pulmones enfermos, lo que alivia la carga de trabajo del corazón.

Silicio

La mayor parte del silicio se usa industrialmente sin purificarse y, de hecho, a menudo con un procesamiento comparativamente pequeño de su forma natural. El silicio es un ingrediente vital en las aleaciones de aluminio, acero y hierro. Se agrega como agente fundente para aleaciones de cobre. En forma de arcilla y arena, se utiliza para fabricar ladrillos y hormigón; es un material refractario valioso para trabajos de alta temperatura, por ejemplo, arenas de moldeo para piezas fundidas en aplicaciones de fundición. La sílice se utiliza para fabricar ladrillos refractarios, un tipo de cerámica. Los minerales de silicato también se encuentran en la cerámica blanca, una clase importante de productos que generalmente contienen varios tipos de minerales de arcilla cocidos (filosilicatos de aluminio naturales). Un ejemplo es la porcelana, que se basa en el mineral de silicato caolinita. El vidrio tradicional (vidrio sodocálcico a base de sílice) también funciona en muchas de las mismas formas, y también se utiliza para ventanas y contenedores. El metal de silicio hiperpuro y el silicio hiperpura dopado (dopado con boro, fósforo, galio o arsénico) se utilizan en células solares, transistores y semiconductores.

Oxígeno y Silicio: comparación en la tabla

Elemento Oxígeno Silicio
Densidad 0,00125 g / cm3 2,33 g / cm3
Resistencia a la tracción N / A 170 MPa
Límite de elastacidad N / A 165 MPa
Módulo de Young N / A 150 GPa
Escala de Mohs N / A 7
Dureza Brinell N / A 2300 MPa
Dureza Vickers N / A N / A
Punto de fusion -209,9 ° C 1410 ° C
Punto de ebullición -195,8 ° C 3265 ° C
Conductividad térmica 0,02598 W / mK 148 W / mK
Coeficiente de expansión térmica N / A 2,6 µm / mK
Calor especifico 1,04 J / g K 0,71 J / g K
Calor de fusión (N2) 0,7204 kJ / mol 50,55 kJ / mol
Calor de vaporización (N2) 5,56 kJ / mol 384,22 kJ / mol

Oxígeno y Azufre – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del oxígeno y el azufre, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Oxígeno vs azufre.

oxígeno y azufre - comparación

Comparar oxígeno con otro elemento

Sodio - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Silicio - Propiedades - Precio - Aplicaciones - Producción

Azufre - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Helio - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Berilio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Comparar azufre con otro elemento

Litio - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Sodio - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Oxígeno y Azufre: acerca de los elementos

Oxígeno

El oxígeno es un gas reactivo incoloro e inodoro, el elemento químico del número atómico 8 y el componente vital del aire. Es un miembro del grupo calcógeno en la tabla periódica, un no metal altamente reactivo y un agente oxidante que forma fácilmente óxidos con la mayoría de los elementos así como con otros compuestos. En masa, el oxígeno es el tercer elemento más abundante del universo, después del hidrógeno y el helio.

Azufre

El azufre es abundante, multivalente y no metálico. En condiciones normales, los átomos de azufre forman moléculas octatómicas cíclicas con una fórmula química S8. El azufre elemental es un sólido cristalino de color amarillo brillante a temperatura ambiente. Químicamente, el azufre reacciona con todos los elementos excepto el oro, el platino, el iridio, el telurio y los gases nobles.

Oxígeno en la tabla periódica

Azufre en la tabla periódica

Fuente: www.luciteria.com

Oxígeno y Azufre: aplicaciones

Oxígeno

Los usos comunes del oxígeno incluyen la producción de acero, plásticos y textiles, soldadura fuerte, soldadura y corte de aceros y otros metales, propulsor de cohetes, terapia de oxígeno y sistemas de soporte vital en aviones, submarinos, vuelos espaciales y buceo. La fundición de mineral de hierro en acero consume el 55% del oxígeno producido comercialmente. En este proceso, el oxígeno se inyecta a través de una lanza de alta presión en el hierro fundido, que elimina las impurezas de azufre y el exceso de carbono como los respectivos óxidos, dióxido de azufre y dióxido de carbono. La absorción de oxígeno del aire es el propósito esencial de la respiración, por lo que la suplementación con oxígeno se usa en medicina. El tratamiento no solo aumenta los niveles de oxígeno en la sangre del paciente, sino que tiene el efecto secundario de disminuir la resistencia al flujo sanguíneo en muchos tipos de pulmones enfermos, lo que alivia la carga de trabajo del corazón.

Azufre

El mayor uso comercial del elemento es la producción de ácido sulfúrico para fertilizantes de sulfato y fosfato y otros procesos químicos. El azufre se utiliza cada vez más como componente de fertilizantes. La forma más importante de azufre para fertilizantes es el mineral sulfato de calcio. El elemento azufre se utiliza en fósforos, insecticidas y fungicidas. Muchos compuestos de azufre son olorosos, y los olores del gas natural aromatizado, el aroma de la mofeta, la toronja y el ajo se deben a compuestos orgánicos de azufre.

Oxígeno y Azufre: comparación en la tabla

Elemento Oxígeno Azufre
Densidad 0,00125 g / cm3 1,96 g / cm3
Resistencia a la tracción N / A N / A
Límite de elastacidad N / A N / A
Módulo de Young N / A N / A
Escala de Mohs N / A 2
Dureza Brinell N / A N / A
Dureza Vickers N / A N / A
Punto de fusion -209,9 ° C 112,8 ° C
Punto de ebullición -195,8 ° C 444,7 ° C
Conductividad térmica 0,02598 W / mK 0,269 W / mK
Coeficiente de expansión térmica N / A N / A
Calor especifico 1,04 J / g K 0,71 J / g K
Calor de fusión (N2) 0,7204 kJ / mol 1,7175 kJ / mol
Calor de vaporización (N2) 5,56 kJ / mol 45 kJ / mol

Oxígeno y Cloro – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del oxígeno y el cloro, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Oxígeno vs Cloro.

oxígeno y cloro - comparación

Comparar oxígeno con otro elemento

Sodio - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Silicio - Propiedades - Precio - Aplicaciones - Producción

Azufre - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Helio - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Berilio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Comparar el cloro con otro elemento

Berilio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Sodio - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Cesio - Propiedades - Precio - Aplicaciones - Producción

Bario - Propiedades - Precio - Aplicaciones - Producción

Cobre - Propiedades - Precio - Aplicaciones - Producción

Plata - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Bromo - Propiedades - Precio - Aplicaciones - Producción

Yodo - Propiedades - Precio - Aplicaciones - Producción

Oxígeno y Cloro: acerca de los elementos

Oxígeno

El oxígeno es un gas reactivo incoloro e inodoro, el elemento químico del número atómico 8 y el componente vital del aire. Es un miembro del grupo calcógeno en la tabla periódica, un no metal altamente reactivo y un agente oxidante que forma fácilmente óxidos con la mayoría de los elementos así como con otros compuestos. En masa, el oxígeno es el tercer elemento más abundante del universo, después del hidrógeno y el helio.

Cloro

El cloro es un gas de color amarillo verdoso a temperatura ambiente. Es un elemento extremadamente reactivo y un agente oxidante fuerte: entre los elementos, tiene la mayor afinidad electrónica y la tercera electronegatividad más alta, solo detrás del oxígeno y el flúor.

Oxígeno en la tabla periódica

Cloro en la tabla periódica

Fuente: www.luciteria.com

Oxígeno y Cloro: aplicaciones

Oxígeno

Los usos comunes del oxígeno incluyen la producción de acero, plásticos y textiles, soldadura fuerte, soldadura y corte de aceros y otros metales, propulsor de cohetes, terapia de oxígeno y sistemas de soporte vital en aviones, submarinos, vuelos espaciales y buceo. La fundición de mineral de hierro en acero consume el 55% del oxígeno producido comercialmente. En este proceso, el oxígeno se inyecta a través de una lanza de alta presión en el hierro fundido, que elimina las impurezas de azufre y el exceso de carbono como los respectivos óxidos, dióxido de azufre y dióxido de carbono. La absorción de oxígeno del aire es el propósito esencial de la respiración, por lo que la suplementación con oxígeno se usa en medicina. El tratamiento no solo aumenta los niveles de oxígeno en la sangre del paciente, sino que tiene el efecto secundario de disminuir la resistencia al flujo sanguíneo en muchos tipos de pulmones enfermos, lo que alivia la carga de trabajo del corazón.

Cloro

El cloro se utiliza en la fabricación de una amplia gama de productos de consumo, aproximadamente dos tercios de ellos productos químicos orgánicos como el cloruro de polivinilo (PVC), muchos productos intermedios para la producción de plásticos y otros productos finales que no contienen el elemento. Como desinfectante común, el cloro elemental y los compuestos generadores de cloro se utilizan más directamente en las piscinas para mantenerlas higiénicas. Aunque quizás sea más conocido por su papel en el suministro de agua potable limpia, la química del cloro también ayuda a proporcionar materiales de construcción, electrónica, fibra óptica, células de energía solar de bajo consumo energético, el 93 por ciento de los productos farmacéuticos que salvan vidas, el 86 por ciento de los compuestos fitosanitarios, plásticos médicos. , y mucho más.

Oxígeno y Cloro: comparación en la tabla

Elemento Oxígeno Cloro
Densidad 0,00125 g / cm3 0,0032 g / cm3
Resistencia a la tracción N / A N / A
Límite de elastacidad N / A N / A
Módulo de Young N / A N / A
Escala de Mohs N / A N / A
Dureza Brinell N / A N / A
Dureza Vickers N / A N / A
Punto de fusion -209,9 ° C -101 ° C
Punto de ebullición -195,8 ° C -34,6 ° C
Conductividad térmica 0,02598 W / mK 0,0089 W / mK
Coeficiente de expansión térmica N / A N / A
Calor especifico 1,04 J / g K 0,48 J / g K
Calor de fusión (N2) 0,7204 kJ / mol 3,23 kJ / mol
Calor de vaporización (N2) 5,56 kJ / mol 10,2 kJ / mol

Oxígeno y Calcio – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del oxígeno y el calcio, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Oxígeno vs calcio.

oxígeno y calcio - comparación

Comparar oxígeno con otro elemento

Sodio - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Silicio - Propiedades - Precio - Aplicaciones - Producción

Azufre - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Helio - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Berilio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Comparar calcio con otro elemento

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Sodio - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Fósforo - Propiedades - Precio - Aplicaciones - Producción

Azufre - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Oxígeno y Calcio: acerca de los elementos

Oxígeno

El oxígeno es un gas reactivo incoloro e inodoro, el elemento químico del número atómico 8 y el componente vital del aire. Es un miembro del grupo calcógeno en la tabla periódica, un no metal altamente reactivo y un agente oxidante que forma fácilmente óxidos con la mayoría de los elementos así como con otros compuestos. En masa, el oxígeno es el tercer elemento más abundante del universo, después del hidrógeno y el helio.

Calcio

El calcio es un metal alcalinotérreo, es un metal amarillo pálido reactivo que forma una capa oscura de óxido-nitruro cuando se expone al aire. Sus propiedades físicas y químicas son muy similares a las de sus homólogos más pesados, el estroncio y el bario. Es el quinto elemento más abundante en la corteza terrestre y el tercer metal más abundante, después del hierro y el aluminio.

Oxígeno en la tabla periódica

Calcio en la tabla periódica

Fuente: www.luciteria.com

Oxígeno y Calcio: aplicaciones

Oxígeno

Los usos comunes del oxígeno incluyen la producción de acero, plásticos y textiles, soldadura fuerte, soldadura y corte de aceros y otros metales, propulsor de cohetes, terapia de oxígeno y sistemas de soporte vital en aviones, submarinos, vuelos espaciales y buceo. La fundición de mineral de hierro en acero consume el 55% del oxígeno producido comercialmente. En este proceso, el oxígeno se inyecta a través de una lanza de alta presión en el hierro fundido, que elimina las impurezas de azufre y el exceso de carbono como los respectivos óxidos, dióxido de azufre y dióxido de carbono. La absorción de oxígeno del aire es el propósito esencial de la respiración, por lo que la suplementación con oxígeno se usa en medicina. El tratamiento no solo aumenta los niveles de oxígeno en la sangre del paciente, sino que tiene el efecto secundario de disminuir la resistencia al flujo sanguíneo en muchos tipos de pulmones enfermos, lo que alivia la carga de trabajo del corazón.

Calcio

El mayor uso del calcio metálico se encuentra en la fabricación de acero, debido a su fuerte afinidad química por el oxígeno y el azufre. Sus óxidos y sulfuros, una vez formados, dan aluminato de cal líquido e inclusiones de sulfuro en el acero que flotan. Los compuestos de calcio se utilizan en la fabricación de insecticidas, pinturas, tiza, textiles y fuegos artificiales.

Oxígeno y Calcio: comparación en la tabla

Elemento Oxígeno Calcio
Densidad 0,00125 g / cm3 1,55 g / cm3
Resistencia a la tracción N / A 110 MPa
Límite de elastacidad N / A N / A
Módulo de Young N / A 20 GPa
Escala de Mohs N / A 1,5
Dureza Brinell N / A 170 – 400 MPa
Dureza Vickers N / A N / A
Punto de fusion -209,9 ° C 842 ° C
Punto de ebullición -195,8 ° C 1484 ° C
Conductividad térmica 0,02598 W / mK 200 W / mK
Coeficiente de expansión térmica N / A 22,3 µm / mK
Calor especifico 1,04 J / g K 0,63 J / g K
Calor de fusión (N2) 0,7204 kJ / mol 8,54 kJ / mol
Calor de vaporización (N2) 5,56 kJ / mol 153,3 kJ / mol

Flúor y Neón – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del flúor y el neón, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Flúor vs Neón.

flúor y neón - comparación

Compara el flúor con otro elemento

Cloro - Propiedades - Precio - Aplicaciones - Producción

Neón - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Comparar neón con otro elemento

Helio - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Argón - Propiedades - Precio - Aplicaciones - Producción

Xenón - Propiedades - Precio - Aplicaciones - Producción

Flúor y Neón: acerca de los elementos

Flúor

El flúor es el halógeno más ligero y existe como gas diatómico amarillo pálido altamente tóxico en condiciones estándar. Como elemento más electronegativo, es extremadamente reactivo: casi todos los demás elementos, incluidos algunos gases nobles, forman compuestos con flúor.

Neón

El neón es un gas monoatómico inerte, incoloro e inodoro en condiciones estándar, con aproximadamente dos tercios de la densidad del aire.

Flúor en la tabla periódica

Neón en la tabla periódica

Fuente: www.luciteria.com

Flúor y Neón – Aplicaciones

Flúor

Debido al costo de refinar el flúor puro, la mayoría de las aplicaciones comerciales utilizan compuestos de flúor, y aproximadamente la mitad de la fluorita extraída se utiliza en la fabricación de acero. El resto de la fluorita se convierte en fluoruro de hidrógeno corrosivo en ruta a varios fluoruros orgánicos, o en criolita, que juega un papel clave en el refinado del aluminio. La mayoría de los procesos comerciales de enriquecimiento de uranio (difusión gaseosa y método de centrifugación de gas) requieren que el uranio esté en forma gaseosa, por lo que el concentrado de óxido de uranio debe convertirse primero en hexafluoruro de uranio, que es un gas a temperaturas relativamente bajas. Las moléculas que contienen un enlace carbono-flúor a menudo tienen una estabilidad química y térmica muy alta; sus principales usos son como refrigerantes, aislamiento eléctrico y utensilios de cocina, el último como PTFE (teflón).

Neón

El neón se usa a menudo en letreros y produce una luz naranja rojiza brillante inconfundible. Aunque las luces de tubo con otros colores a menudo se denominan «neón», utilizan diferentes gases nobles o colores variados de iluminación fluorescente. El neón también se utiliza para fabricar indicadores de alto voltaje y equipos de conmutación, pararrayos, equipos de buceo y láseres. El neón líquido es un refrigerante criogénico importante. Tiene más de 40 veces más capacidad de refrigeración por unidad de volumen que el helio líquido y más de 3 veces la del hidrógeno líquido.

Flúor y Neón: comparación en la tabla

Elemento Flúor Neón
Densidad 0,0017 g / cm3 0,0009 g / cm3
Resistencia a la tracción N / A N / A
Límite de elastacidad N / A N / A
Módulo de Young N / A N / A
Escala de Mohs N / A N / A
Dureza Brinell N / A N / A
Dureza Vickers N / A N / A
Punto de fusion -219,8 ° C -248 ° C
Punto de ebullición -188,1 ° C -248,7 ° C
Conductividad térmica 0,0279 W / mK 0,0493 W / mK
Coeficiente de expansión térmica N / A N / A
Calor especifico 0,82 J / g K 0,904 J / g K
Calor de fusión 0,2552 kJ / mol 0,3317 kJ / mol
Calor de vaporización 3,2698 kJ / mol 1,7326 kJ / mol

Flúor y Calcio – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del flúor y el calcio, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Flúor vs calcio.

flúor y calcio - comparación

Compara el flúor con otro elemento

Cloro - Propiedades - Precio - Aplicaciones - Producción

Neón - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Comparar calcio con otro elemento

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Sodio - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Fósforo - Propiedades - Precio - Aplicaciones - Producción

Azufre - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Flúor y Calcio: acerca de los elementos

Flúor

El flúor es el halógeno más ligero y existe como gas diatómico amarillo pálido altamente tóxico en condiciones estándar. Como elemento más electronegativo, es extremadamente reactivo: casi todos los demás elementos, incluidos algunos gases nobles, forman compuestos con flúor.

Calcio

El calcio es un metal alcalinotérreo, es un metal amarillo pálido reactivo que forma una capa oscura de óxido-nitruro cuando se expone al aire. Sus propiedades físicas y químicas son muy similares a las de sus homólogos más pesados, el estroncio y el bario. Es el quinto elemento más abundante en la corteza terrestre y el tercer metal más abundante, después del hierro y el aluminio.

Flúor en la tabla periódica

Calcio en la tabla periódica

Fuente: www.luciteria.com

Flúor y Calcio – Aplicaciones

Flúor

Debido al costo de refinar el flúor puro, la mayoría de las aplicaciones comerciales utilizan compuestos de flúor, y aproximadamente la mitad de la fluorita extraída se utiliza en la fabricación de acero. El resto de la fluorita se convierte en fluoruro de hidrógeno corrosivo en ruta a varios fluoruros orgánicos, o en criolita, que juega un papel clave en el refinado del aluminio. La mayoría de los procesos comerciales de enriquecimiento de uranio (difusión gaseosa y método de centrifugación de gas) requieren que el uranio esté en forma gaseosa, por lo que el concentrado de óxido de uranio debe convertirse primero en hexafluoruro de uranio, que es un gas a temperaturas relativamente bajas. Las moléculas que contienen un enlace carbono-flúor a menudo tienen una estabilidad química y térmica muy alta; sus principales usos son como refrigerantes, aislamiento eléctrico y utensilios de cocina, el último como PTFE (teflón).

Calcio

El mayor uso del calcio metálico se encuentra en la fabricación de acero, debido a su fuerte afinidad química por el oxígeno y el azufre. Sus óxidos y sulfuros, una vez formados, dan aluminato de cal líquido e inclusiones de sulfuro en el acero que flotan. Los compuestos de calcio se utilizan en la fabricación de insecticidas, pinturas, tiza, textiles y fuegos artificiales.

Flúor y Calcio: comparación en la tabla

Elemento Flúor Calcio
Densidad 0,0017 g / cm3 1,55 g / cm3
Resistencia a la tracción N / A 110 MPa
Límite de elastacidad N / A N / A
Módulo de Young N / A 20 GPa
Escala de Mohs N / A 1,5
Dureza Brinell N / A 170 – 400 MPa
Dureza Vickers N / A N / A
Punto de fusion -219,8 ° C 842 ° C
Punto de ebullición -188,1 ° C 1484 ° C
Conductividad térmica 0,0279 W / mK 200 W / mK
Coeficiente de expansión térmica N / A 22,3 µm / mK
Calor especifico 0,82 J / g K 0,63 J / g K
Calor de fusión 0,2552 kJ / mol 8,54 kJ / mol
Calor de vaporización 3,2698 kJ / mol 153,3 kJ / mol

Neón y Xenón – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del neón y el xenón, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Neón vs Xenón.

neón y xenón - comparación

Comparar neón con otro elemento

Helio - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Argón - Propiedades - Precio - Aplicaciones - Producción

Xenón - Propiedades - Precio - Aplicaciones - Producción

Comparar el xenón con otro elemento

Helio - Propiedades - Precio - Aplicaciones - Producción

Neón - Propiedades - Precio - Aplicaciones - Producción

Criptón - Propiedades - Precio - Aplicaciones - Producción

Neón y Xenón: acerca de los elementos

Neón

El neón es un gas monoatómico inerte, incoloro e inodoro en condiciones estándar, con aproximadamente dos tercios de la densidad del aire.

Xenón

El xenón es un gas noble incoloro, denso e inodoro que se encuentra en la atmósfera de la Tierra en pequeñas cantidades. [10] Aunque generalmente no es reactivo, el xenón puede sufrir algunas reacciones químicas. El xenón fue descubierto por primera vez en 1898 por el químico escocés William Ramsay y el químico inglés Morris Travers. El nombre xenón para este gas proviene de la palabra griega ξένον [xenon], forma singular neutra de ξένος [xenos], que significa ‘extranjero (er)’, ‘extraño (r)’ o ‘invitado’. En la industria nuclear, especialmente el xenón 135 artificial tiene un impacto tremendo en el funcionamiento de un reactor nuclear. Para los físicos y para los operadores de reactores, es importante comprender los mecanismos que producen y eliminan el xenón del reactor para predecir cómo responderá el reactor después de los cambios en el nivel de potencia.

Neón en la tabla periódica

Xenón en la tabla periódica

Fuente: www.luciteria.com

Neón y Xenón – Aplicaciones

Neón

El neón se usa a menudo en letreros y produce una luz naranja rojiza brillante inconfundible. Aunque las luces de tubo con otros colores a menudo se denominan «neón», utilizan diferentes gases nobles o colores variados de iluminación fluorescente. El neón también se utiliza para fabricar indicadores de alto voltaje y equipos de conmutación, pararrayos, equipos de buceo y láseres. El neón líquido es un refrigerante criogénico importante. Tiene más de 40 veces más capacidad de refrigeración por unidad de volumen que el helio líquido y más de 3 veces la del hidrógeno líquido.

Xenón

El xenón es útil en las siguientes aplicaciones. El destello de luz blanco producido por el xenón lo hace adecuado para su uso en luces estroboscópicas y para alimentar láseres rubí. El xenón se utiliza en dispositivos emisores de luz llamados lámparas de flash de xenón, que se utilizan en flashes fotográficos y lámparas estroboscópicas.

Neón y Xenón: comparación en la tabla

Elemento Neón Xenón
Densidad 0,0009 g / cm3 0,0059 g / cm3
Resistencia a la tracción N / A N / A
Límite de elastacidad N / A N / A
Módulo de Young N / A N / A
Escala de Mohs N / A N / A
Dureza Brinell N / A N / A
Dureza Vickers N / A N / A
Punto de fusion -248 ° C -111,8 ° C
Punto de ebullición -248,7 ° C -107,1 ° C
Conductividad térmica 0,0493 W / mK 0,00565 W / mK
Coeficiente de expansión térmica N / A N / A
Calor especifico 0,904 J / g K 0,158 J / g K
Calor de fusión 0,3317 kJ / mol 2,297 kJ / mol
Calor de vaporización 1,7326 kJ / mol 12,636 kJ / mol

Boro y Oxígeno – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del boro y el oxígeno, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Boro vs Oxígeno.

boro y oxígeno - comparación

Comparar el boro con otro elemento

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Nitrógeno - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Silicio - Propiedades - Precio - Aplicaciones - Producción

Comparar oxígeno con otro elemento

Sodio - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Silicio - Propiedades - Precio - Aplicaciones - Producción

Azufre - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Potasio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Helio - Propiedades - Precio - Aplicaciones - Producción

Litio - Propiedades - Precio - Aplicaciones - Producción

Berilio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Boro y Oxígeno: acerca de los elementos

Boro

Se producen concentraciones significativas de boro en la Tierra en compuestos conocidos como minerales de borato. Hay más de 100 minerales de borato diferentes, pero los más comunes son: bórax, kernita, ulexita, etc. El boro natural consiste principalmente en dos isótopos estables, 11B (80,1%) y 10B (19,9%). En la industria nuclear, el boro se usa comúnmente como absorbente de neutrones debido a la alta sección transversal de neutrones del isótopo 10B. Su sección transversal de reacción (n, alfa) para neutrones térmicos es de aproximadamente 3840 graneros (para neutrones de 0,025 eV). El isótopo 11B tiene una sección transversal de absorción para neutrones térmicos de aproximadamente 0,005 graneros (para neutrones de 0,025 eV). La mayoría de las reacciones (n, alfa) de los neutrones térmicos son reacciones 10B (n, alfa) 7Li acompañadas de una emisión gamma de 0,48 MeV.

Oxígeno

El oxígeno es un gas reactivo incoloro e inodoro, el elemento químico del número atómico 8 y el componente vital del aire. Es un miembro del grupo calcógeno en la tabla periódica, un no metal altamente reactivo y un agente oxidante que forma fácilmente óxidos con la mayoría de los elementos así como con otros compuestos. En masa, el oxígeno es el tercer elemento más abundante del universo, después del hidrógeno y el helio.

Boro en la tabla periódica

Oxígeno en la tabla periódica

Fuente: www.luciteria.com

Boro y Oxígeno: aplicaciones

Boro

Casi todo el mineral de boro extraído de la Tierra se destina al refinamiento en ácido bórico y tetraborato de sodio pentahidratado. En los Estados Unidos, el 70% del boro se utiliza para la producción de vidrio y cerámica. El principal uso a escala industrial mundial de compuestos de boro (alrededor del 46% del uso final) se encuentra en la producción de fibra de vidrio para fibra de vidrio estructural y aislante que contiene boro, especialmente en Asia. El boro se agrega a los aceros al boro a un nivel de unas pocas partes por millón para aumentar la templabilidad. Se añaden porcentajes más altos a los aceros utilizados en la industria nuclear debido a la capacidad de absorción de neutrones del boro (por ejemplo, gránulos de carburo de boro). El boro también puede aumentar la dureza de la superficie de aceros y aleaciones mediante el borrado. Los polvos de carburo de boro y nitruro de boro cúbico se utilizan ampliamente como abrasivos.

Oxígeno

Los usos comunes del oxígeno incluyen la producción de acero, plásticos y textiles, soldadura fuerte, soldadura y corte de aceros y otros metales, propulsor de cohetes, terapia de oxígeno y sistemas de soporte vital en aviones, submarinos, vuelos espaciales y buceo. La fundición de mineral de hierro en acero consume el 55% del oxígeno producido comercialmente. En este proceso, el oxígeno se inyecta a través de una lanza de alta presión en el hierro fundido, que elimina las impurezas de azufre y el exceso de carbono como los respectivos óxidos, dióxido de azufre y dióxido de carbono. La absorción de oxígeno del aire es el propósito esencial de la respiración, por lo que la suplementación con oxígeno se usa en medicina. El tratamiento no solo aumenta los niveles de oxígeno en la sangre del paciente, sino que tiene el efecto secundario de disminuir la resistencia al flujo sanguíneo en muchos tipos de pulmones enfermos, lo que alivia la carga de trabajo del corazón.

Boro y Oxígeno: comparación en la tabla

Elemento Boro Oxígeno
Densidad 2,46 g / cm3 0,00143 g / cm3
Resistencia a la tracción N / A N / A
Límite de elastacidad N / A N / A
Módulo de Young N / A N / A
Escala de Mohs 9.5 N / A
Dureza Brinell N / A N / A
Dureza Vickers 49000 MPa N / A
Punto de fusion 2079 ° C -218,4 ° C
Punto de ebullición 3927 ° C -183 ° C
Conductividad térmica 27 W / mK 0,02674 W / mK
Coeficiente de expansión térmica 5-7 µm / mK N / A
Calor especifico 1,02 J / g K 0,92 J / g K
Calor de fusión 50,2 kJ / mol (O2) 0,444 kJ / mol
Calor de vaporización 508 kJ / mol (O2) 6,82 kJ / mol

Carbono y Cloro – Comparación – Propiedades

Este artículo contiene una comparación de las propiedades térmicas y atómicas clave del carbono y el cloro, dos elementos químicos comparables de la tabla periódica. También contiene descripciones básicas y aplicaciones de ambos elementos. Carbono vs Cloro.

carbono y cloro - comparación

Comparar carbono con otro elemento

Hidrógeno - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Nitrógeno - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Cloro - Propiedades - Precio - Aplicaciones - Producción

Bromo - Propiedades - Precio - Aplicaciones - Producción

Comparar el cloro con otro elemento

Berilio - Propiedades - Precio - Aplicaciones - Producción

Boro - Propiedades - Precio - Aplicaciones - Producción

Carbono - Propiedades - Precio - Aplicaciones - Producción

Oxígeno - Propiedades - Precio - Aplicaciones - Producción

Flúor - Propiedades - Precio - Aplicaciones - Producción

Sodio - Propiedades - Precio - Aplicaciones - Producción

Magnesio - Propiedades - Precio - Aplicaciones - Producción

Aluminio - Propiedades - Precio - Aplicaciones - Producción

Calcio - Propiedades - Precio - Aplicaciones - Producción

Cesio - Propiedades - Precio - Aplicaciones - Producción

Bario - Propiedades - Precio - Aplicaciones - Producción

Cobre - Propiedades - Precio - Aplicaciones - Producción

Plata - Propiedades - Precio - Aplicaciones - Producción

Hierro - Propiedades - Precio - Aplicaciones - Producción

Bromo - Propiedades - Precio - Aplicaciones - Producción

Yodo - Propiedades - Precio - Aplicaciones - Producción

Carbono y Cloro – Acerca de los elementos

Carbono

No es metálico y tetravalente, lo que hace que cuatro electrones estén disponibles para formar enlaces químicos covalentes. El carbono es uno de los pocos elementos conocidos desde la antigüedad. El carbono es el decimoquinto elemento más abundante en la corteza terrestre y el cuarto elemento más abundante en el universo en masa después del hidrógeno, el helio y el oxígeno.

Cloro

El cloro es un gas de color amarillo verdoso a temperatura ambiente. Es un elemento extremadamente reactivo y un agente oxidante fuerte: entre los elementos, tiene la mayor afinidad electrónica y la tercera mayor electronegatividad, solo detrás del oxígeno y el flúor.

Carbono en la tabla periódica

Cloro en la tabla periódica

Fuente: www.luciteria.com

Carbono y Cloro – Aplicaciones

Carbono

El principal uso económico del carbono, además de los alimentos y la madera, es en forma de hidrocarburos, sobre todo el gas metano de combustibles fósiles y el petróleo crudo (petróleo). El grafito y los diamantes son dos importantes alótropos del carbono que tienen amplias aplicaciones. Los usos del carbono y sus compuestos son extremadamente variados. Puede formar aleaciones con hierro, de las cuales la más común es el acero al carbono. El carbono es un elemento no metálico, que es un elemento de aleación importante en todos los materiales a base de metales ferrosos. El carbono siempre está presente en las aleaciones metálicas, es decir, en todos los grados de acero inoxidable y aleaciones resistentes al calor. El carbono es un austenitizador muy fuerte y aumenta la resistencia del acero. De hecho, es el principal elemento endurecedor y es esencial para la formación de cementita, Fe3C, perlita, esferidita y martensita de hierro-carbono. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. El grafito se combina con arcillas para formar la «mina» que se utiliza en los lápices que se utilizan para escribir y dibujar. También se utiliza como lubricante y pigmento, como material de moldeo en la fabricación de vidrio, en electrodos para baterías secas y en galvanoplastia y electroformado, en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono. El grafito se combina con arcillas para formar la «mina» que se utiliza en los lápices que se utilizan para escribir y dibujar. También se utiliza como lubricante y pigmento, como material de moldeo en la fabricación de vidrio, en electrodos para baterías secas y en galvanoplastia y electroformado, en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono. El grafito se combina con arcillas para formar la «mina» que se utiliza en los lápices que se utilizan para escribir y dibujar. También se utiliza como lubricante y pigmento, como material de moldeo en la fabricación de vidrio, en electrodos para baterías secas y en galvanoplastia y electroformado, en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono. en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono. en escobillas para motores eléctricos y como moderador de neutrones en reactores nucleares. El carbón vegetal se ha utilizado desde los primeros tiempos para una amplia gama de fines, incluidos el arte y la medicina, pero su uso más importante ha sido, con mucho, como combustible metalúrgico. Las fibras de carbono se utilizan donde el peso, la rigidez y la conductividad elevados son bajos o donde se desea el aspecto del tejido de fibra de carbono.

Cloro

El cloro se utiliza en la fabricación de una amplia gama de productos de consumo, aproximadamente dos tercios de ellos productos químicos orgánicos como el cloruro de polivinilo (PVC), muchos productos intermedios para la producción de plásticos y otros productos finales que no contienen el elemento. Como desinfectante común, el cloro elemental y los compuestos generadores de cloro se utilizan más directamente en las piscinas para mantenerlas higiénicas. Aunque quizás sea más conocido por su papel en el suministro de agua potable limpia, la química del cloro también ayuda a proporcionar materiales de construcción, electrónica, fibra óptica, células de energía solar de bajo consumo energético, el 93 por ciento de los productos farmacéuticos que salvan vidas, el 86 por ciento de los compuestos fitosanitarios, plásticos médicos. , y mucho más.

Carbono y Cloro – Comparación en la tabla

Elemento Carbono Cloro
Densidad 2,26 g / cm3 0,0032 g / cm3
Resistencia a la tracción 15 MPa (grafito); 3500 MPa (fibra de carbono) N / A
Límite de elastacidad N / A N / A
Módulo de Young 4,1 GPa (grafito); 228 GPa (fibra de carbono) N / A
Escala de Mohs 0,8 (grafito) N / A
Dureza Brinell N / A N / A
Dureza Vickers N / A N / A
Punto de fusion 4099 ° C -101 ° C
Punto de ebullición 4527 ° C -34,6 ° C
Conductividad térmica 129 W / mK 0,0089 W / mK
Coeficiente de expansión térmica 0,8 µm / mK N / A
Calor especifico 0,71 J / g K 0,48 J / g K
Calor de fusión N / A 3,23 kJ / mol
Calor de vaporización 355,8 kJ / mol 10,2 kJ / mol