Facebook Instagram Youtube Twitter

¿Qué es el acero de aleación? Definición

En general, el acero aleado es acero que se alea con una variedad de elementos en cantidades totales entre 1,0% y 50% en peso para mejorar sus propiedades mecánicas.

El acero es una aleación de hierro y carbono, pero el término acero de aleación generalmente solo se refiere a aceros que contienen otros elementos, como vanadio, molibdeno o cobalto, en cantidades suficientes para alterar las propiedades del acero base. En general, el acero aleado es acero que se alea con una variedad de elementos en cantidades totales entre 1,0% y 50% en peso para mejorar sus propiedades mecánicas. Los aceros inoxidables son un grupo específico de aceros de alta aleación, que contienen un mínimo de 11% de contenido de cromo en masa y un máximo de 1,2% de carbono en masa. Los aceros aleados se dividen en dos grupos:

  • Aceros de baja aleaciónAceros de baja aleación. Los aceros de baja aleación constituyen una categoría de materiales ferrosos que exhiben propiedades mecánicas superiores a los aceros al carbono simples como resultado de la adición de elementos de aleación tales como níquel, cromo y molibdeno, manganeso y silicio. La función de los elementos de aleación es aumentar la templabilidad para optimizar las propiedades mecánicas y la tenacidad después del tratamiento térmico. En algunos casos, sin embargo, las adiciones de aleación se utilizan para reducir la degradación ambiental bajo ciertas condiciones de servicio específicas.
  • Aceros de alta aleación. Los aceros con aleaciones superiores al 5% en peso se clasifican típicamente como aceros de alta aleación. Los aceros inoxidables son los principales tipos de aceros de alta aleación, pero otros dos tipos son de ultra alta resistencia de aceros de níquel-cobalto y aceros maraging. Los aceros inoxidables se definen como aceros de alta aleación con bajo contenido de carbono con al menos un 10,5% de cromo con o sin otros elementos de aleación.

Referencia especial: Metalurgia para no metalúrgicos, 2do edición, ASM International. 450 páginas, ISBN-10: 1615038213.

Agentes de aleación en aceros aleados

El hierro puro es demasiado blando para ser utilizado con fines de estructura, pero la adición de pequeñas cantidades de otros elementos (carbono, manganeso o silicio, por ejemplo) aumenta en gran medida su resistencia mecánica.

Acero cromado
Chromoly 4150 – Tubo

Las aleaciones suelen ser más fuertes que los metales puros, aunque por lo general ofrecen una conductividad térmica y eléctrica reducida. La resistencia es el criterio más importante por el cual se juzgan muchos materiales estructurales. Por lo tanto, las aleaciones se utilizan para la construcción de ingeniería. El efecto sinérgico de los elementos de aleación y el tratamiento térmico produce una enorme variedad de microestructuras y propiedades.

  • Carbono. El carbono es un elemento no metálico, que es un elemento de aleación importante en todos los materiales a base de metales ferrosos. El carbono siempre está presente en las aleaciones metálicas, es decir, en todos los grados de acero inoxidable y aleaciones resistentes al calor. El carbono es un austenitizador muy fuerte y aumenta la resistencia del acero. De hecho, es el principal elemento endurecedor y es esencial para la formación de la cementita, Fe3C, perlita, esferoidita y martensita de hierro y carbono. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. Si se combina con cromo como componente separado (carburo de cromo), puede tener un efecto perjudicial sobre la resistencia a la corrosión al eliminar parte del cromo de la solución sólida en la aleación y, como consecuencia, reducir la cantidad de cromo disponible para asegurar resistencia a la corrosión.
  • Cromo. El cromo aumenta la dureza, la fuerza y la resistencia a la corrosión. El efecto de fortalecimiento de la formación de carburos metálicos estables en los límites de los granos y el fuerte aumento de la resistencia a la corrosión hicieron del cromo un importante material de aleación para el acero. La resistencia de estas aleaciones metálicas a los efectos químicos de los agentes corrosivos se basa en la pasivación. Para que se produzca la pasivación y se mantenga estable, la aleación Fe-Cr debe tener un contenido mínimo de cromo de aproximadamente el 11% en peso, por encima del cual puede producirse pasividad y por debajo del cual es imposible. El cromo se puede utilizar como elemento de endurecimiento y se utiliza con frecuencia con un elemento de endurecimiento como el níquel para producir propiedades mecánicas superiores. A temperaturas más altas, el cromo contribuye a una mayor resistencia. Los aceros para herramientas de alta velocidad contienen entre un 3 y un 5% de cromo. Normalmente se utiliza para aplicaciones de esta naturaleza junto con el molibdeno.
  • Níquel. El níquel es uno de los elementos de aleación más comunes. Aproximadamente el 65% de la producción de níquel se utiliza en aceros inoxidables. Debido a que el níquel no forma ningún compuesto de carburo en el acero, permanece en solución en la ferrita, fortaleciendo y endureciendo la fase de ferrita. Los aceros al níquel se tratan térmicamente fácilmente porque el níquel reduce la velocidad de enfriamiento crítica. Las aleaciones a base de níquel (por ejemplo, aleaciones de Fe-Cr-Ni (Mo)) exhiben una excelente ductilidad y tenacidad, incluso a altos niveles de resistencia y estas propiedades se conservan hasta bajas temperaturas. El níquel también reduce la expansión térmica para una mejor estabilidad dimensional. El níquel es el elemento base de las superaleaciones, que son un grupo de aleaciones de níquel, hierro-níquel y cobalto que se utilizan en los motores a reacción. Estos metales tienen una excelente resistencia a la deformación por fluencia térmica y conservan su rigidez, resistencia,
  • Molibdeno. Encontrado en pequeñas cantidades en aceros inoxidables, el molibdeno aumenta la templabilidad y resistencia, particularmente a altas temperaturas. El alto punto de fusión del molibdeno lo hace importante para dar resistencia al acero y otras aleaciones metálicas a altas temperaturas. El molibdeno es único en la medida en que aumenta la resistencia a la tracción y a la fluencia a alta temperatura del acero. Retrasa la transformación de austenita en perlita mucho más que la transformación de austenita en bainita; por tanto, la bainita se puede producir mediante el enfriamiento continuo de aceros que contienen molibdeno.
  • Vanadio. El vanadio generalmente se agrega al acero para inhibir el crecimiento de granos durante el tratamiento térmico. Al controlar el crecimiento del grano, mejora tanto la resistencia como la tenacidad de los aceros templados y revenido.
  • Tungsteno. El tungsteno produce carburos estables y refina el tamaño de grano para aumentar la dureza, particularmente a altas temperaturas. El tungsteno se utiliza ampliamente en aceros para herramientas de alta velocidad y se ha propuesto como sustituto del molibdeno en aceros ferríticos de activación reducida para aplicaciones nucleares.

Aceros de baja aleación

Los aceros de baja aleación constituyen una categoría de materiales ferrosos que exhiben propiedades mecánicas superiores a los aceros al carbono simples como resultado de la adición de elementos de aleación tales como níquel, cromo y molibdeno, manganeso y silicio. La función de los elementos de aleación es aumentar la templabilidad para optimizar las propiedades mecánicas y la tenacidad después del tratamiento térmico. En algunos casos, sin embargo, las adiciones de aleación se utilizan para reducir la degradación ambiental bajo ciertas condiciones de servicio específicas. Los aceros de baja aleación se pueden clasificar en cuatro grandes grupos:

  • Aceros templados y revenido (QT) con bajo contenido de carbono
  • aceros de ultra alta resistencia al carbono medio
  • aceros para rodamientos
  • aceros al cromo-molibdeno resistentes al calor

Acero 41xx – Acero cromado – Aceros de carbono medio de ultra alta resistencia

El acero cromoly es un acero de baja aleación de resistencia ultra alta de carbono medio que recibe su nombre de una combinación de las palabras «cromo» y «molibdeno», dos de los principales elementos de aleación. El acero cromado se usa a menudo cuando se requiere más resistencia que la del acero al carbono dulce, aunque a menudo tiene un costo mayor. Chromoly se encuentra bajo las designaciones de acero AISI 41xx (ASTM A519). Ejemplos de aplicaciones para 4130, 4140 y 4145 incluyen tubos estructurales, cuadros de bicicletas, cigüeñales, eslabones de cadena, collares de perforación, botellas de gas para el transporte de gases presurizados, piezas de armas de fuego, componentes de embrague y volante, y jaulas antivuelco.

Acero cromado

Propiedades del acero 41xx – acero cromado

Las propiedades de los materiales son propiedades intensivas, lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.

Propiedades mecánicas del acero 41xx – acero cromado

Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.

Resistencia del acero 41xx – Acero cromado

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.

Resistencia a la tracción

La resistencia máxima a la tracción del acero 41xx: el acero cromado depende de cierto grado, pero es de aproximadamente 700 MPa.

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Límite de elasticidad

El límite elástico del acero 41xx: el acero cromado depende de cierto grado, pero es de aproximadamente 500 MPa.

El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez superado el límite elástico, una parte de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.

Módulo de Young

Módulo de Young acero 41xx – acero cromoly es 205 GPa.

El módulo de Young es el módulo elástico para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

Dureza del acero 41xx – Acero cromado

La dureza Brinell del acero 41xx – acero cromado es de aproximadamente 200 MPa.

Número de dureza BrinellEn la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie (deformación plástica localizada) y el rayadoLa dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.

La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro  como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.

La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB. El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno (wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.

El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:

Ensayo de dureza Brinell

Hay una variedad de métodos de prueba de uso común (por ejemplo, Brinell, KnoopVickers y Rockwell). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.

Propiedades térmicas del acero 41xx – Acero cromado

Las propiedades térmicas  de los materiales se refieren a la respuesta de los materiales a los cambios de  temperatura y a la aplicación de calor. A medida que un sólido absorbe energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.

La capacidad caloríficala expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.

Punto de fusión del acero 41xx – Acero cromado

El punto de fusión del acero 41xx – acero cromado es de alrededor de 1427°C.

En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio.

Conductividad térmica del acero 41xx – Acero cromado

La conductividad térmica del acero 41xx – acero cromado es de alrededor de 41 W/(mK).

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica, k (o λ), medida en W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción. Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T). Se asocian definiciones similares con conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

 

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Metales

Esperamos que este artículo, Aleación de acero , lo ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.