En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. Al diseñar estructuras y máquinas, es importante considerar estos factores, a fin de que el material seleccionado tenga la resistencia adecuada para resistir las cargas o fuerzas aplicadas y conservar su forma original. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.
Sin embargo, debemos tener en cuenta que la carga que deformará un componente pequeño, será menor que la carga para deformar un componente mayor del mismo material. Por lo tanto, la carga (fuerza) no es un término adecuado para describir la resistencia . En su lugar, podemos usar la fuerza (carga) por unidad de área (σ = F / A), llamada tensión , que es constante (hasta que se produce la deformación) para un material dado independientemente del tamaño de la pieza componente. En este concepto, la deformación también es una variable muy importante, ya que define la deformación de un objeto. En resumen, el comportamiento mecánico de los sólidos generalmente se define por relaciones constitutivas tensión-deformación.Una deformación se denomina deformación elástica si la tensión es una función lineal de la deformación. En otras palabras, el estrés y la tensión siguen la ley de Hooke . Más allá de la región lineal, la tensión y la deformación muestran un comportamiento no lineal. Este comportamiento inelástico se denomina deformación plástica.
Estrés
En mecánica y ciencia de los materiales, el estrés (representado por una letra griega minúscula sigma – σ ) es una cantidad física que expresa las fuerzas internas que las partículas vecinas de un material continuo ejercen entre sí, mientras que la deformación es la medida de la deformación del material. que no es una cantidad física.
Aunque es imposible medir la intensidad de esta tensión, se puede medir la carga externa y la zona a la que se aplica. La tensión (σ) se puede equiparar a la carga por unidad de área o la fuerza (F) aplicada por área de sección transversal (A) perpendicular a la fuerza como:
Cuando un metal se somete a una carga (fuerza), se distorsiona o deforma, sin importar cuán fuerte sea el metal o cuán ligera sea la carga. Si la carga es pequeña, la distorsión probablemente desaparecerá cuando se retire la carga. La intensidad o grado de distorsión se conoce como tensión . Una deformación se denomina deformación elástica si la tensión es una función lineal de la deformación. En otras palabras, el estrés y la tensión siguen la ley de Hooke . Más allá de la región lineal, la tensión y la deformación muestran un comportamiento no lineal. Este comportamiento inelástico se denomina deformación plástica .
El estrés es la resistencia interna, o contrafuente, de un material a los efectos distorsionadores de una fuerza o carga externa. Estas contrafuerzas tienden a devolver los átomos a sus posiciones normales. La resistencia total desarrollada es igual a la carga externa.
Cepa
En la ciencia de los materiales , la deformación también es una variable muy importante, ya que define la deformación de un objeto. A diferencia de la tensión en un objeto, que en realidad no se puede ver, la deformación es una cantidad visible y medible. Cuando tira de una barra de tensión, puede ver que la barra aumenta físicamente en longitud (o se alarga). Cuando dobla una viga, la ve curvar. Las deformaciones son un indicador directo de tensión. El comportamiento mecánico de los sólidos generalmente se define por relaciones constitutivas tensión-deformación.Cuando un metal se somete a una carga (fuerza), se distorsiona o deforma, sin importar cuán fuerte sea el metal o cuán ligera sea la carga. Si la carga es pequeña, la distorsión probablemente desaparecerá cuando se retire la carga. Tal cambio dimensional proporcional (intensidad o grado de distorsión) se llama deformación y se mide como la deformación total (alargamiento) por longitud de referencia de material debido a alguna tensión aplicada.
Estrés – Curva de deformación
La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. Al diseñar estructuras y máquinas, es importante considerar estos factores, a fin de que el material seleccionado tenga la resistencia adecuada para resistir las cargas o fuerzas aplicadas y conservar su forma original. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.
Sin embargo, debemos tener en cuenta que la carga que deformará un componente pequeño, será menor que la carga para deformar un componente mayor del mismo material. Por lo tanto, la carga (fuerza) no es un término adecuado para describir la resistencia . En su lugar, podemos usar la fuerza (carga) por unidad de área (σ = F / A), llamada tensión , que es constante (hasta que se produce la deformación) para un material dado independientemente del tamaño de la pieza componente. En este concepto, la deformación también es una variable muy importante, ya que define la deformación de un objeto. En resumen, el comportamiento mecánico de los sólidos generalmente se define por relaciones constitutivas tensión-deformación.Una deformación se denomina deformación elástica si la tensión es una función lineal de la deformación. En otras palabras, el estrés y la tensión siguen la ley de Hooke . Más allá de la región lineal, la tensión y la deformación muestran un comportamiento no lineal. Este comportamiento inelástico se denomina deformación plástica.
En la figura se muestra un diagrama esquemático de la curva de tensión-deformación del acero con bajo contenido de carbono a temperatura ambiente. Hay varias etapas que muestran diferentes comportamientos, lo que sugiere diferentes propiedades mecánicas. Para aclarar, los materiales pueden perder una o más etapas que se muestran en la figura, o tener etapas totalmente diferentes. En este caso, tenemos que distinguir entre las características de tensión-deformación de los materiales dúctiles y frágiles . Los siguientes puntos describen las diferentes regiones de la curva tensión-deformación y la importancia de varias ubicaciones específicas.
- Límite proporcional . El límite proporcional corresponde a la ubicación de la tensión al final de la región lineal , por lo que el gráfico de tensión-deformación es una línea recta y el gradiente será igual al módulo elástico del material. Para el esfuerzo de tracción y compresión, la pendiente de la parte de la curva donde el esfuerzo es proporcional a la deformación se denomina módulo de Young y se aplica la ley de Hooke . Entre el límite proporcional y el punto de fluencia, la ley de Hooke se vuelve cuestionable y la tensión aumenta más rápidamente.
- Punto de rendimiento . El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. El límite elástico o límite elástico es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez que se supera el límite de fluencia, una fracción de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.
- Máxima resistencia a la tracción . La máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máximaque puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «la máxima resistencia». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores,temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.
- Punto de fractura : El punto de fractura es el punto de deformación donde el material se separa físicamente. En este punto, la deformación alcanza su valor máximo y el material realmente se fractura, aunque la tensión correspondiente puede ser menor que la resistencia última en este punto. Los materiales dúctiles tienen una resistencia a la fractura menor que la resistencia máxima a la tracción (UTS), mientras que en los materiales frágiles la resistencia a la fractura es equivalente a la UTS. Si un material dúctil alcanza su máxima resistencia a la tracción en una situación de carga controlada, continuará deformándose, sin aplicación de carga adicional, hasta que se rompa. Sin embargo, si la carga está controlada por desplazamiento, la deformación del material puede aliviar la carga, evitando la ruptura.
En muchas situaciones, el límite elástico se utiliza para identificar la tensión permisible a la que se puede someter un material. Para los componentes que tienen que soportar altas presiones, como los que se utilizan en los reactores de agua a presión (PWR), este criterio no es adecuado. Para cubrir estas situaciones, la teoría de falla del esfuerzo cortante máximo se ha incorporado en el Código de recipientes a presión y calderas de ASME (Sociedad Estadounidense de Ingenieros Mecánicos), Sección III, Reglas para la construcción de recipientes a presión nucleares. Esta teoría establece que la falla de un componente de tubería ocurre cuando el esfuerzo cortante máximo excede el esfuerzo cortante en el punto de fluencia en una prueba de tracción.
- Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
- Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 2 y 2. Enero de 1993.
- William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
- Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
- Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
- González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
- Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
- JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
Esperamos que este artículo, Concepto de estrés y tensión – Modelo de tensión-tensión , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.