Facebook Instagram Youtube Twitter

Qu’est-ce que le concept de contrainte et de déformation – Modèle de contrainte-déformation – Définition

Dans ce concept, la déformation est également une variable très importante, puisqu’elle définit la déformation d’un objet. En résumé, le comportement mécanique des solides est généralement défini par des relations constitutives contrainte-déformation. Modèle contrainte-déformation

Courbe contrainte-déformation - Résistance des matériauxEn mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Cependant, il faut noter que la charge qui va déformer un petit composant, sera inférieure à la charge pour déformer un plus gros composant du même matériau. Par conséquent, la charge (force) n’est pas un terme approprié pour décrire la force. Au lieu de cela, nous pouvons utiliser la force (charge) par unité de surface (σ = F/A), appelée contrainte, qui est constante (jusqu’à ce qu’une déformation se produise) pour un matériau donné, quelle que soit la taille du composant. Dans ce concept, la déformation est également une variable très importante, puisqu’elle définit la déformation d’un objet. En résumé, le comportement mécanique des solides est généralement défini par des relations constitutives contrainte-déformation. Une déformation est appelée déformation élastique, si la contrainte est une fonction linéaire de la déformation. En d’autres termes, le stress et la déformation suivent la loi de Hooke. Au-delà de la région linéaire, la contrainte et la déformation présentent un comportement non linéaire. Ce comportement inélastique est appelé déformation plastique.

Stress

En mécanique et science des matériaux, la contrainte (représentée par une lettre grecque minuscule sigma – σ) est une grandeur physique qui exprime les forces internes que les particules voisines d’un matériau continu exercent les unes sur les autres, tandis que la déformation est la mesure de la déformation du matériau qui n’est pas une grandeur physique.

Bien qu’il soit impossible de mesurer l’intensité de cette contrainte, la charge externe et la zone sur laquelle elle est appliquée peuvent être mesurées. La contrainte (σ) peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

stress - définition

Lorsqu’un métal est soumis à une charge (force), il est déformé ou déformé, quelle que soit la force du métal ou la légèreté de la charge. Si la charge est faible, la distorsion disparaîtra probablement lorsque la charge sera retirée. L’intensité ou le degré de distorsion est appelé déformation. Une déformation est appelée déformation élastique, si la contrainte est une fonction linéaire de la déformation. En d’autres termes, le stress et la déformation suivent la loi de Hooke. Au-delà de la région linéaire, la contrainte et la déformation présentent un comportement non linéaire. Ce comportement inélastique est appelé déformation plastique.

La contrainte est la résistance interne, ou contre-force, d’un matériau aux effets déformants d’une force ou d’une charge externe. Ces contre-forces tendent à ramener les atomes à leur position normale. La résistance totale développée est égale à la charge externe.

Souche

En science des matériauxla déformation est également une variable très importante, puisqu’elle définit la déformation d’un objet. Contrairement au stress dans un objet, que vous ne pouvez pas réellement voir, la déformation est une quantité visible et mesurable. Lorsque vous tirez sur une tige de tension, vous pouvez voir la tige augmenter physiquement en longueur (ou s’allonger). Lorsque vous pliez une poutre, vous la voyez se courber. Les déformations sont un indicateur direct de déformation. Le comportement mécanique des solides est généralement défini par des relations constitutives contrainte-déformation. Lorsqu’un métal est soumis à une charge (force), il est déformé ou déformé, quelle que soit la force du métal ou la légèreté de la charge. Si la charge est faible, la distorsion disparaîtra probablement lorsque la charge sera retirée. Un tel changement dimensionnel proportionnel (intensité ou degré de distorsion) est appelé déformation et est mesuré comme la déformation totale (allongement) par longueur de référence de matériau due à une certaine contrainte appliquée.

souche - définition

Contrainte – Courbe de déformation

Courbe contrainte-déformation - Résistance des matériauxLa résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Cependant, il faut noter que la charge qui va déformer un petit composant, sera inférieure à la charge pour déformer un plus gros composant du même matériau. Par conséquent, la charge (force) n’est pas un terme approprié pour décrire la force. Au lieu de cela, nous pouvons utiliser la force (charge) par unité de surface (σ = F/A), appelée contrainte, qui est constante (jusqu’à ce qu’une déformation se produise) pour un matériau donné, quelle que soit la taille du composant. Dans ce concept, la déformation est également une variable très importante, puisqu’elle définit la déformation d’un objet. En résumé, le comportement mécanique des solides est généralement défini par des relations constitutives contrainte-déformation. Une déformation est appelée déformation élastique, si la contrainte est une fonction linéaire de la déformation. En d’autres termes, le stress et la déformation suivent la loi de Hooke. Au-delà de la région linéaire, la contrainte et la déformation présentent un comportement non linéaire. Ce comportement inélastique est appelé déformation plastique.

Un diagramme schématique de la courbe contrainte-déformation de l’acier à faible teneur en carbone à température ambiante est présenté dans la figure. Il existe plusieurs étapes montrant des comportements différents, ce qui suggère des propriétés mécaniques différentes. Pour clarifier, les matériaux peuvent manquer une ou plusieurs étapes indiquées sur la figure, ou avoir des étapes totalement différentes. Dans ce cas, nous devons faire la distinction entre les caractéristiques de contrainte-déformation des matériaux ductiles et fragiles. Les points suivants décrivent les différentes régions de la courbe contrainte-déformation et l’importance de plusieurs emplacements spécifiques.

  • Limite proportionnelle. La limite proportionnelle correspond à l’emplacement de la contrainte à l’extrémité de la région linéaire, de sorte que le graphique contrainte-déformation est une ligne droite et le gradient sera égal au module d’élasticité du matériau. Pour les contraintes de traction et de compression, la pente de la partie de la courbe où la contrainte est proportionnelle à la déformation est appelée module de Young et la loi de Hooke s’applique. Entre la limite proportionnelle et la limite d’élasticité, la loi de Hooke devient discutable et la déformation augmente plus rapidement.
  • Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxPoint de rendement. La limite d’élasticité est le point sur une courbe contrainte-déformation qui indique la limite du comportement élastique et le début du comportement plastique. La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.
  • Résistance à la traction ultime. La résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.
  • Point de rupture: Le point de rupture est le point de déformation où le matériau se sépare physiquement. À ce point, la déformation atteint sa valeur maximale et le matériau se rompt effectivement, même si la contrainte correspondante peut être inférieure à la résistance ultime à ce point. Les matériaux ductiles ont une résistance à la rupture inférieure à la résistance ultime à la traction (UTS), alors que dans les matériaux fragiles, la résistance à la rupture est équivalente à l’UTS. Si un matériau ductile atteint sa résistance ultime à la traction dans une situation de charge contrôlée, il continuera à se déformer, sans application de charge supplémentaire, jusqu’à ce qu’il se rompe. Cependant, si le chargement est contrôlé en déplacement, la déformation du matériau peut soulager la charge, empêchant la rupture.

Dans de nombreuses situations, la limite d’élasticité est utilisée pour identifier la contrainte admissible à laquelle un matériau peut être soumis. Pour les composants devant résister à des pressions élevées, comme ceux utilisés dans les réacteurs à eau sous pression (REP), ce critère n’est pas suffisant. Pour couvrir ces situations, la théorie de la contrainte de cisaillement maximale de rupture a été incorporée dans le code ASME (The American Society of Mechanical Engineers) Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Pressure Vessels. Cette théorie stipule que la défaillance d’un composant de tuyauterie se produit lorsque la contrainte de cisaillement maximale dépasse la contrainte de cisaillement au point d’élasticité lors d’un essai de traction.

References :
 
Science des matériaux:

  1. Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 et 2. Janvier 1993.
  2. Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
  3. William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
  4. En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
  5. Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
  6. González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
  7. Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
  8. JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir au dessus:

Force

Nous espérons que cet article, Concept de contrainte et de déformation – Modèle de contrainte-déformation, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.