Facebook Instagram Youtube Twitter

¿Qué es el titanio de grado 1? Definición

El titanio de grado 1 comercialmente puro es la aleación de titanio más dúctil y blanda. Es una buena solución para ambientes corrosivos y de conformado en frío. Posee la mayor conformabilidad, excelente resistencia a la corrosión y alta tenacidad al impacto.

Aleación de titanioEl titanio es un metal de transición brillante con un color plateado, baja densidad y alta resistencia. El titanio es resistente a la corrosión en agua de mar, agua regia y cloro. En las centrales eléctricas, el titanio se puede utilizar en condensadores de superficie. El metal se extrae de sus principales minerales mediante los procesos Kroll y Hunter. El proceso de Kroll implicó la reducción de tetracloruro de titanio (TiCl4), primero con sodio y calcio, y luego con magnesio, bajo una atmósfera de gas inerte. El titanio puro es más resistente que los aceros comunes con bajo contenido de carbono, pero un 45% más ligero. También es dos veces más fuerte que las aleaciones de aluminio débiles, pero solo un 60% más pesado. Las dos propiedades más útiles del metal sonresistencia a la corrosión y relación fuerza-densidad, la más alta de cualquier elemento metálico. La resistencia a la corrosión de las aleaciones de titanio a temperaturas normales es inusualmente alta. La resistencia a la corrosión del titanio se basa en la formación de una capa de óxido protectora estable. Aunque el titanio «comercialmente puro» tiene propiedades mecánicas aceptables y se ha utilizado para implantes ortopédicos y dentales, para la mayoría de las aplicaciones el titanio se alea con pequeñas cantidades de aluminio y vanadio, típicamente 6% y 4% respectivamente, en peso. Esta mezcla tiene una solubilidad sólida que varía drásticamente con la temperatura, lo que le permite experimentar un fortalecimiento por precipitación.

aleaciones de titanio - composiciónTitanio grado 1

El titanio comercialmente puro de grado 1 es la aleación de titanio más dúctil y blanda. Es una buena solución para ambientes corrosivos y de conformado en frío. Posee la mayor conformabilidad , excelente resistencia a la corrosión y alta tenacidad al impacto. Debido a su formabilidad, comúnmente está disponible como placa y tubería de titanio. Éstas incluyen:

  • Procesamiento químico
  • Fabricación de clorato
  • Arquitectura
  • Industria médica
  • Industria marina
  • Piezas de automóviles
  • Estructura del fuselaje

Titanio comercialmente puro – Grado 1 en condensadores de vapor

En las plantas de energía nuclear, el sistema del condensador de vapor principal (MC) está diseñado para condensar y desairear el vapor de escape de la turbina principal y proporcionar un disipador de calor para el sistema de derivación de la turbina. El vapor de escape de las turbinas LP se condensa pasando por tubos que contienen agua del sistema de enfriamiento. Estos tubos suelen estar hechos de acero inoxidable, aleaciones de cobre o titanio, dependiendo de varios criterios de selección (como conductividad térmica o resistencia a la corrosión).  Tubos de condensador de titanio suelen ser la mejor opción técnica, sin embargo, el titanio es un material muy caro y el uso de tubos de condensador de titanio está asociado a unos costes iniciales muy elevados. El titanio, en particular, puede aportar mejoras importantes, como velocidades del agua más altas que promueven mejores coeficientes de calor, excelente resistencia a la abrasión, erosión y corrosión, mejorando así la resistencia a las incrustaciones. Los tubos son en su mayoría tubos soldados de ASTM SB 338 grado 1 fabricados en una línea de fabricación continua. Este titanio comercialmente puro es el titanio más blando y tiene la mayor ductilidad. Tiene buenas características de conformado en frío y proporciona una excelente resistencia a la corrosión. También tiene excelentes propiedades de soldadura y alta tenacidad al impacto. Todas las operaciones de fabricación (soldadura, recocido, pruebas no destructivas) están completamente automatizadas para producir tubos de alta calidad en grandes cantidades.

Tipos de aleaciones de titanio

El titanio existe en dos formas cristalográficas. A temperatura ambiente, el titanio sin alear (comercialmente puro) tiene una estructura cristalina hexagonal compacta (hcp) denominada fase alfa (α). Cuando la temperatura del titanio puro alcanza los 885°C (denominada temperatura β transus del titanio), la estructura cristalina cambia a una estructura bcc conocida como fase beta (β). Los elementos de aleación aumentan o disminuyen la temperatura para la transformación α-a-β, por lo que los elementos de aleación en titanio se clasifican como estabilizadores α o estabilizadores β. Por ejemplo, el vanadio, el niobio y el molibdeno disminuyen la temperatura de transformación de α a β y promueven la formación de la fase β.

  • Aleaciones Alfa. Las aleaciones alfa contienen elementos como aluminio y estaño y se prefieren para aplicaciones de alta temperatura debido a sus características superiores de fluencia. Estos elementos estabilizadores α funcionan inhibiendo el cambio en la temperatura de transformación de fase o haciendo que aumente. La ausencia de una transición dúctil a frágil, una característica de las aleaciones β, hace que las aleaciones α sean adecuadas para aplicaciones criogénicas. Por otro lado, no se pueden reforzar mediante tratamiento térmico porque alfa es la fase estable y, por tanto, no son tan resistentes como las aleaciones beta.
  • Aleaciones Beta. Las aleaciones beta contienen elementos de transición como vanadio, niobio y molibdeno, que tienden a disminuir la temperatura de la transición de fase α a β. Las aleaciones beta tienen una excelente templabilidad y responden fácilmente al tratamiento térmico. Estos materiales son altamente forjables y exhiben una alta tenacidad a la fractura. Por ejemplo, la resistencia máxima a la tracción de una aleación de titanio de alta resistencia, TI-10V-2Fe-3Al, es de aproximadamente 1200 MPa.
  • Aleación Alfa + Beta. Las aleaciones alfa + beta tienen composiciones que soportan una mezcla de fases α y β y pueden contener entre 10 y 50% de fase β a temperatura ambiente. La aleación α + β más común es Ti-6Al-4V. La resistencia de estas aleaciones puede mejorarse y controlarse mediante tratamiento térmico. Los ejemplos incluyen: Ti-6Al-4V, Ti-6Al-4V-ELI, Ti-6Al-6V-2Sn, Ti-6Al-7Nb.
References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Vea arriba:
Aleaciones de titanio

Esperamos que este artículo, Titanio de grado 1 , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.