Facebook Instagram Youtube Twitter

¿Qué es la dureza de los aceros? Definición

Dureza de aceros. El acero con alto contenido de carbono tiene aproximadamente un 0,60 a un 1,00% de contenido de carbono. La dureza es más alta que los otros grados pero la ductilidad disminuye. La dureza Brinell del acero con alto contenido de carbono es de aproximadamente 200 MPa.
Diagrama de fases Fe-Fe3C
En la figura, está el diagrama de fases de hierro-carburo de hierro (Fe-Fe3C). El porcentaje de carbono presente y la temperatura definen la fase de la aleación hierro-carbono y por tanto sus características físicas y propiedades mecánicas. El porcentaje de carbono determina el tipo de aleación ferrosa: hierro, acero o fundición. Fuente: wikipedia.org Läpple, Volker – Wärmebehandlung des Stahls Grundlagen. Licencia: CC BY-SA 4.0

Los aceros son aleaciones de hierro-carbono que pueden contener concentraciones apreciables de otros elementos de aleación. Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. Debido a su muy alta resistencia, pero aún una dureza sustancial, y su capacidad para ser alterada en gran medida por el tratamiento térmico, el acero es una de las aleaciones ferrosas más útiles y comunes en el uso moderno. Existen miles de aleaciones que tienen diferentes composiciones y / o tratamientos térmicos. Las propiedades mecánicas son sensibles al contenido de carbono, que normalmente es inferior al 1,0% en peso. Según la clasificación AISI, el acero al carbono se divide en cuatro clases según el contenido de carbono.

Los aceros se componen de hierro (Fe) aleado con carbono (C) (aproximadamente del 0,1% al 1%, según el tipo). Agregar una pequeña cantidad de carbono no metálico al hierro cambia su gran ductilidad por una mayor resistencia. Debido a su muy alta resistencia, pero aún sustancial dureza, y su capacidad de ser alterado en gran medida por el tratamiento térmico, el acero es una de las aleaciones ferrosas más útiles y comunes en el uso moderno. Su uso generalizado se explica por los siguientes factores:

  1. Los compuestos que contienen hierro existen en abundantes cantidades dentro de la corteza terrestre.
  2. Las aleaciones metálicas de hierro y acero se pueden producir utilizando técnicas de extracción, refinación, aleación y fabricación relativamente económicas.
  3. Las aleaciones ferrosas son extremadamente versátiles, ya que pueden adaptarse para tener una amplia gama de propiedades mecánicas y físicas.

La principal desventaja de muchas aleaciones ferrosas es su susceptibilidad a la corrosión. Al agregar cromo al acero, se puede mejorar su resistencia a la corrosión, creando acero inoxidable, mientras que agregar silicio alterará sus características eléctricas, produciendo acero al silicio.

Dureza de aceros

Número de dureza BrinellEn la ciencia de los materiales, la dureza es la capacidad de resistir la hendidura de la superficie (deformación plástica localizada) y el rayadoLa dureza es probablemente la propiedad del material menos definida porque puede indicar resistencia al rayado, resistencia a la abrasión, resistencia a la indentación o incluso resistencia a la deformación o deformación plástica localizada. La dureza es importante desde el punto de vista de la ingeniería porque la resistencia al desgaste por fricción o erosión por vapor, aceite y agua generalmente aumenta con la dureza.

La prueba de dureza Brinell es una de las pruebas de dureza por indentación, que se ha desarrollado para las pruebas de dureza. En las pruebas Brinell, se fuerza un penetrador esférico durobajo una carga específica en la superficie del metal que se va a probar. La prueba típica utiliza una bola de acero endurecido de 10 mm (0,39 pulg.) De diámetro  como penetrador con una fuerza de 3000 kgf (29,42 kN; 6,614 lbf). La carga se mantiene constante durante un tiempo determinado (entre 10 y 30 s). Para materiales más blandos, se usa una fuerza menor; para materiales más duros, una bola de carburo de tungsteno se sustituye por la bola de acero.

La prueba proporciona resultados numéricos para cuantificar la dureza de un material, que se expresa mediante el número de dureza Brinell – HB. El número de dureza Brinell está designado por las normas de prueba más comúnmente utilizadas (ASTM E10-14 [2] e ISO 6506-1: 2005) como HBW (H de dureza, B de Brinell y W del material del penetrador, tungsteno (wolfram) carburo). En las normas anteriores se utilizaba HB o HBS para referirse a las medidas realizadas con penetradores de acero.

El número de dureza Brinell (HB) es la carga dividida por el área de la superficie de la muesca. El diámetro de la impresión se mide con un microscopio con una escala superpuesta. El número de dureza Brinell se calcula a partir de la ecuación:

Ensayo de dureza Brinell

Existe una variedad de métodos de prueba de uso común (por ejemplo, Brinell, KnoopVickers y Rockwell). Hay tablas disponibles que correlacionan los números de dureza de los diferentes métodos de prueba donde la correlación es aplicable. En todas las escalas, un número de dureza alto representa un metal duro.

Ejemplo: dureza del acero con bajo contenido de carbono

La dureza Brinell del acero con bajo contenido de carbono es de aproximadamente 120 MPa.

Ejemplo: dureza del acero con alto contenido de carbono

La dureza Brinell del acero con alto contenido de carbono es de aproximadamente 200 MPa.

Ejemplo: dureza del acero de Damasco

La dureza Rockwell del acero de Damasco depende del tipo actual de acero, pero puede ser aproximadamente 62-64 HRC Rockwell.

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: comprender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Aceros

Esperamos que este artículo, Dureza de los aceros , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.