Facebook Instagram Youtube Twitter

Quelle est la résistance des alliages d’aluminium – Définition

Résistance des alliages d’aluminium. Une résistance élevée peut être obtenue entre autres par l’introduction d’une fraction volumique élevée de fines particules de seconde phase réparties de manière homogène et par un affinement de la taille des grains.

L’aluminium de haute pureté est un matériau souple avec une résistance ultime d’environ 10 MPa, ce qui limite son utilisation dans les applications industrielles. L’aluminium de pureté commerciale (99-99,6%) devient plus dur et plus résistant en raison de la présence d’impuretés, en particulier de Si et de Fe. Mais lorsqu’ils sont alliés, les alliages d’aluminium peuvent être traités thermiquement, ce qui modifie considérablement leurs propriétés mécaniques.

alliages d'aluminiumLes alliages d’aluminium sont à base d’aluminium, dont les principaux éléments d’alliage sont Cu, Mn, Si, Mg, Mg+Si, Zn. Les compositions d’alliages d’aluminium sont enregistrées auprès de l’Aluminum Association. Les alliages d’aluminium sont répartis en 9 familles (Al1xxx à Al9xxx). Les différentes familles d’alliages et les principaux éléments d’alliage sont:

  • 1xxx: aucun élément d’alliage
  • 2xxx: Cuivre
  • 3xxx: Manganèse
  • 4xxx: Silicium
  • 5xxx: Magnésium
  • 6xxx: magnésium et silicium
  • 7xxx: zinc, magnésium et cuivre
  • 8xxx: autres éléments qui ne sont pas couverts par d’autres séries

Il existe également deux classifications principales, à savoir les alliages de fonderie et les alliages corroyés, qui sont tous deux subdivisés en catégories pouvant être traitées thermiquement et non traitées thermiquement. Les alliages d’aluminium contenant des éléments d’alliage à solubilité solide limitée à température ambiante et avec une forte dépendance à la température de la solubilité solide (par exemple Cu) peuvent être renforcés par un traitement thermique approprié (durcissement par précipitation). La résistance des alliages d’Al commerciaux traités thermiquement dépasse 550 MPa.

Les propriétés mécaniques des alliages d’aluminium dépendent fortement de leur composition de phase et de leur microstructure. Une résistance élevée peut être obtenue entre autres par l’introduction d’une fraction volumique élevée de particules fines de seconde phase réparties de manière homogène et par un affinement de la taille des grains. En général, les alliages d’aluminium se caractérisent par une masse volumique relativement faible (2,7 g/cm3 contre 7,9 g/cm3 pour l’acier), des conductivités électriques et thermiques élevées, et une résistance à la corrosion dans certains environnements courants, y compris l’atmosphère ambiante. La principale limitation de l’aluminium est sa faible température de fusion (660 °C), qui limite la température maximale à laquelle il peut être utilisé. Pour la production générale, les alliages des séries 5000 et 6000 offrent une résistance adéquate combinée à une bonne résistance à la corrosion, une ténacité élevée et une facilité de soudage.

fonte d'aluminium

Résistance des alliages d’aluminium

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime de l’alliage d’aluminium 2024 dépend fortement de l’état du matériau, mais elle est d’environ 450 MPa.

La résistance à la traction ultime de l’alliage d’aluminium 6061 dépend fortement de l’état du matériau, mais pour l’état T6, elle est d’environ 290 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Limite d’élasticité

La limite d’élasticité de l’alliage d’aluminium 2024 dépend fortement de l’état du matériau, mais elle est d’environ 300 MPa.

La limite d’élasticité de l’alliage d’aluminium 6061 dépend fortement de l’état du matériau, mais pour l’état T6, elle est d’environ 240 MPa.

La limite d’ élasticité est le point sur une courbe contrainte-déformation qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young de l’alliage d’aluminium 2024 est d’environ 76 GPa.

Le module de Young de l’alliage d’aluminium 6061 est d’environ 69 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
alliages d’aluminium

Nous espérons que cet article, Résistance des alliages d’aluminium, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.