Facebook Instagram Youtube Twitter

Quelle est la résistance et la dureté des alliages de zirconium – Définition

Résistance et dureté des alliages de zirconium. La résistance à la traction ultime de l’alliage de zirconium – Zircaloy – 4 est d’environ 514 MPa. La dureté Rockwell de l’alliage de zirconium – Zircaloy – 4 est d’environ 89 HRB.

Assemblage de combustible nucléaire
Assemblage combustible typique

Le zirconium et ses alliages sont largement utilisés comme gaine pour les combustibles des réacteurs nucléaires. Le zirconium allié au niobium ou à l’étain possède d’ excellentes propriétés de corrosion. La haute résistance à la corrosion des alliages de zirconium résulte de la formation naturelle d’un oxyde dense et stable à la surface du métal. Ce film est auto-cicatrisant, il continue à se développer lentement à des températures allant jusqu’à environ 550 °C (1020 °F) et il reste fermement adhérent. La propriété recherchée de ces alliages est également une faible section efficace de capture neutronique. Les inconvénients du zirconium sont des propriétés de faible résistance et une faible résistance à la chaleur, qui peuvent être éliminées, par exemple, en s’alliant avec du niobium.

  • Alliages Zirconium – Niobium. Les alliages de zirconium avec du niobium sont utilisés comme gaines des éléments combustibles des réacteurs VVER et RBMK. Ces alliages sont le matériau de base du canal d’assemblage du réacteur RBMK. L’alliage Zr + 1% Nb de type N-1 E-110 est utilisé pour les gainages des éléments combustibles, l’alliage Zr + 2,5% Nb de type E-125 est appliqué pour les tubes des canaux d’assemblage.
  • Zirconium – Alliages d’étain. Les alliages de zirconium, dans lesquels l’étain est l’élément d’alliage de base, permet d’améliorer leurs propriétés mécaniques, ont une large diffusion aux États-Unis. Un sous-groupe commun porte la marque Zircaloy. Dans le cas des alliages zirconium-étain, la diminution de la résistance à la corrosion dans l’eau et la vapeur se produit, ce qui entraîne la nécessité d’un alliage supplémentaire.

Alliages de zirconium dans l’industrie nucléaire

La gaine de combustible a typiquement un rayon intérieur de rZr,2 = 0,408 cm et un rayon extérieur rZr,1 = 0,465 cm.

La gaine de combustible est la couche externe des barres de combustible, située entre le caloporteur du réacteur et le combustible nucléaire (c’est-à-dire les pastilles de combustible). Il est constitué d’un matériau résistant à la corrosion à faible section efficace d’absorption des neutrons thermiques (~ 0,18 × 10 24 cm2), généralement en alliage de zirconium. La gaine de combustible a typiquement un rayon intérieur de rZr,2 = 0,408 cm et un rayon extérieur rZr,1 = 0,465 cm. Par rapport aux pastilles de combustible, il n’y a presque pas de génération de chaleur dans la gaine de combustible (la gaine est légèrement chauffée par rayonnement). Toute la chaleur générée dans le combustible doit être transférée par conduction à travers la gaine et, par conséquent, la surface intérieure est plus chaude que la surface extérieure.

Une composition typique d’alliages de zirconium de qualité nucléaire comprend plus de 95 % en poids de zirconium et moins de 2 % d’étain, de niobium, de fer, de chrome, de nickel et d’autres métaux, qui sont ajoutés pour améliorer les propriétés mécaniques et la résistance à la corrosion. L’alliage le plus couramment utilisé, à ce jour, dans les REP, a été le Zircaloy 4, mais il est actuellement remplacé par de nouveaux alliages à base de zirconium-niobium, présentant une meilleure résistance à la corrosion. La température maximale à laquelle les alliages de zirconium peuvent être utilisés dans les réacteurs refroidis à l’eau dépend de leur résistance à la corrosion. Les alliages de zirconium les plus courants, Zircaloy-2 et Zircaloy-4, contiennent les puissants stabilisants α étain et oxygène, ainsi que les stabilisants β fer, chrome et nickel. Les alliages de type Zircalloy, dans lesquels l’étain est l’élément d’alliage de base qui permet d’améliorer leurs propriétés mécaniques, ont une large diffusion dans le monde. Cependant, dans ce cas, la diminution de la résistance à la corrosion dans l’eau et la vapeur a eu lieu, ce qui a entraîné la nécessité d’un alliage supplémentaire. L’amélioration apportée par le niobium additif implique probablement un mécanisme différent. La résistance élevée à la corrosion des métaux alliés au niobium dans l’eau et la vapeur à des températures de 400 à 550 °C est due à leur capacité de passivation avec formation de films protecteurs.

Résistance de l’alliage de zirconium – Zircaloy – 4

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime de l’alliage de zirconium – Zircaloy – 4 est d’environ 514 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation . Cela correspond à la contrainte maximale qui peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon, température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Limite d’élasticité

La limite d’élasticité de l’alliage de zirconium – Zircaloy – 4 est d’environ 381 MPa.

La limite d’ élasticité est le point sur une courbe contrainte-déformation qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young de l’alliage de zirconium – Zircaloy – 4 est d’environ 99 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Dureté de l’alliage de zirconium – Zircaloy – 4

La dureté Rockwell de l’alliage de zirconium – Zircaloy – 4 est d’environ 89 HRB.

Numéro de dureté Brinell

Le test de dureté Rockwell est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le nombre de dureté Rockwell. C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté HRA, HRB, HRC, etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale  cône diamant 120°) et une charge majeure de 150kg.

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Alliages de zirconium  » style= »plat » background= »#ffffff » color= »#606060″ size= »5″ radius= »10″ icon= »icône : lien » icon_color= »#5d5d5d » text_shadow= »0px 0px 0px #000000″ ][/su_button]

Nous espérons que cet article, Résistance et dureté des alliages de zirconium, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.