Facebook Instagram Youtube Twitter

Quelles sont les propriétés thermiques des alliages de zirconium – Définition

Le point de fusion de l’alliage de zirconium – Zircaloy – 4 est d’environ 1850°C. Les alliages de zirconium ont une conductivité thermique plus faible (environ 18 W/mK) que le zirconium pur (environ 22 W/mK). Propriétés thermiques des alliages de zirconium

Assemblage de combustible nucléaire
Assemblage combustible typique

Le zirconium et ses alliages sont largement utilisés comme gaine pour les combustibles des réacteurs nucléaires. Le zirconium allié au niobium ou à l’étain possède d’ excellentes propriétés de corrosion. La haute résistance à la corrosion des alliages de zirconium résulte de la formation naturelle d’un oxyde dense et stable à la surface du métal. Ce film est auto-cicatrisant, il continue à se développer lentement à des températures allant jusqu’à environ 550 °C (1020 °F) et il reste fermement adhérent. La propriété recherchée de ces alliages est également une faible section efficace de capture neutronique. Les inconvénients du zirconium sont des propriétés de faible résistance et une faible résistance à la chaleur, qui peuvent être éliminées, par exemple, en s’alliant avec du niobium.

  • Alliages Zirconium – Niobium. Les alliages de zirconium avec du niobium sont utilisés comme gaines des éléments combustibles des réacteurs VVER et RBMK. Ces alliages sont le matériau de base du canal d’assemblage du réacteur RBMK. L’alliage Zr + 1% Nb de type N-1 E-110 est utilisé pour les gainages des éléments combustibles, l’alliage Zr + 2,5% Nb de type E-125 est appliqué pour les tubes des canaux d’assemblage.
  • Zirconium – Alliages d’étain. Les alliages de zirconium, dans lesquels l’étain est l’élément d’alliage de base, permet d’améliorer leurs propriétés mécaniques, ont une large diffusion aux États-Unis. Un sous-groupe commun porte la marque Zircaloy. Dans le cas des alliages zirconium-étain, la diminution de la résistance à la corrosion dans l’eau et la vapeur se produit, ce qui entraîne la nécessité d’un alliage supplémentaire.

Une composition typique d’alliages de zirconium de qualité nucléaire comprend plus de 95 % en poids de zirconium et moins de 2 % d’étain, de niobium, de fer, de chrome, de nickel et d’autres métaux, qui sont ajoutés pour améliorer les propriétés mécaniques et la résistance à la corrosion. L’alliage le plus couramment utilisé, à ce jour, dans les REP, a été le Zircaloy 4, mais il est actuellement remplacé par de nouveaux alliages à base de zirconium-niobium, présentant une meilleure résistance à la corrosion. La température maximale à laquelle les alliages de zirconium peuvent être utilisés dans les réacteurs refroidis à l’eau dépend de leur résistance à la corrosion. Les alliages de zirconium les plus courants, Zircaloy-2 et Zircaloy-4, contiennent les puissants stabilisants α étain et oxygène, ainsi que les stabilisants β fer, chrome et nickel. Les alliages de type Zircalloy, dans lesquels l’étain est l’élément d’alliage de base qui permet d’améliorer leurs propriétés mécaniques, ont une large diffusion dans le monde. Cependant, dans ce cas, la diminution de la résistance à la corrosion dans l’eau et la vapeur a eu lieu, ce qui a entraîné la nécessité d’un alliage supplémentaire. L’amélioration apportée par le niobium additif implique probablement un mécanisme différent. La résistance élevée à la corrosion des métaux alliés au niobium dans l’eau et la vapeur à des températures de 400 à 550 °C est due à leur capacité de passivation avec formation de films protecteurs.

Oxydation des alliages de zirconium

L’ oxydation des alliages de zirconium est l’un des procédés les plus étudiés dans toute l’industrie nucléaire. La réaction oxydative du zirconium avec l’eau libère du gaz hydrogène, qui diffuse en partie dans l’alliage et forme des hydrures de zirconium. Les hydrures sont moins denses et plus fragiles mécaniquement que l’alliage ; leur formation entraîne le cloquage et la fissuration de la gaine – un phénomène connu sous le nom de fragilisation par l’hydrogène. Alors que bon nombre de ces rapports sont rédigés pour traiter de la réaction du combustible et de la vapeur avec les alliages de zirconium dans le cas d’un accident nucléaire, il existe encore un nombre important de rapports traitant de l’oxydation des alliages de zirconium à des températures modérées d’environ 800 K et moins.

Zr + 2H2O→ZrO2 + 2H2

A haute température, la réaction exothermique des alliages à base de Zr avec la vapeur est beaucoup plus intense et dangereuse pour la sûreté des centrales nucléaires lors d’accidents comme un accident de perte de caloporteur (LOCA). Le principal problème de l’oxydation à haute température est que la gaine de zirconium réagit rapidement avec la vapeur d’eau à haute température. La cinétique d’oxydation des alliages de zirconium concernés semble être parabolique dans la plage de température de 1000-1500 °C pour de nombreux alliages à base de Zr.

Propriétés thermiques de l’alliage de zirconium – Zircaloy – 4

Les propriétés thermiques des matériaux font référence à la réponse des matériaux aux changements de  température et à l’application de chaleur. Lorsqu’un solide absorbe de l’énergie sous forme de chaleur, sa température augmente et ses dimensions augmentent. Mais différents matériaux réagissent différemment à l’application de chaleur.

La capacité calorifiquela dilatation thermique et la conductivité thermique sont des propriétés qui sont souvent critiques dans l’utilisation pratique des solides.

Point de fusion de l’alliage de zirconium – Zircaloy – 4

Le point de fusion de l’alliage de zirconium – Zircaloy – 4 est d’environ 1850 °C.

En général, la fusion est un changement de phase d’une substance de la phase solide à la phase liquide. Le point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre.

Conductivité thermique de l’alliage de zirconium – Zircaloy – 4

Les alliages de zirconium ont une conductivité thermique plus faible (environ 18 W/mK) que le zirconium pur (environ 22 W/mK).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la  conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gaz), par conséquent, elle est également définie pour les liquides et les gaz.

La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Alliages de zirconium  » style= »plat » background= »#ffffff » color= »#606060″ size= »5″ radius= »10″ icon= »icône : lien » icon_color= »#5d5d5d » text_shadow= »0px 0px 0px #000000″ ][/su_button]

Nous espérons que cet article, Propriétés thermiques des alliages de zirconium, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.