Problèmes matériels des turbines
Ramper
Le fluage, également connu sous le nom d’écoulement à froid, est la déformation permanente qui augmente avec le temps sous une charge ou une contrainte constante. Il résulte d’une exposition prolongée à des contraintes mécaniques externes importantes avec une limite d’élasticité et est plus sévère dans les matériaux soumis à la chaleur pendant une longue période. Le taux de déformation est fonction des propriétés du matériau, du temps d’exposition, de la thermodynamics/thermodynamic-properties/what-is-temperature-physics/ »>température d’exposition et de la charge structurelle appliquée. Le fluage est un phénomène très important si nous utilisons des matériaux à haute température. Le fluage est très important dans l’industrie de l’énergie et il est de la plus haute importance dans la conception des moteurs à réaction. Pour de nombreuses situations de fluage à durée de vie relativement courte (par exemple, aubes de turbine dans les avions militaires), le temps de rupture est la considération de conception dominante. Bien entendu, pour sa détermination, des essais de fluage doivent être menés jusqu’au point de rupture; on parle alors d’essais de rupture par fluage.
Érosion Corrosion
La corrosion par érosion est le dommage cumulatif induit par les réactions de corrosion électrochimique et les effets mécaniques du mouvement relatif entre l’électrolyte et la surface de corrosion. L’érosion peut également se produire en combinaison avec d’autres formes de dégradation, telles que la corrosion. On parle alors d’érosion-corrosion. La corrosion par érosion est un processus de dégradation des matériaux dû à l’effet combiné de la corrosion et de l’usure. Presque tous les fluides corrosifs fluides ou turbulents peuvent provoquer une corrosion par érosion. Le mécanisme peut être décrit comme suit:
- érosion mécanique du matériau, ou couche d’oxyde protectrice (ou passive) à sa surface,
- corrosion accrue du matériau, si la vitesse de corrosion du matériau dépend de l’épaisseur de la couche d’oxyde.
La corrosion par érosion se trouve dans les systèmes tels que la tuyauterie, les vannes, les pompes, les buses, les échangeurs de chaleur et les turbines. L’usure est un processus de dégradation mécanique des matériaux qui se produit sur les surfaces de frottement ou d’impact, tandis que la corrosion implique des réactions chimiques ou électrochimiques du matériau. La corrosion peut accélérer l’usure et l’usure peut accélérer la corrosion.
Oxydation à la vapeur
Le comportement d’oxydation de la vapeur est directement lié à la mise en œuvre d’une production d’énergie à vapeur ultra-supercritique pour des rendements améliorés et des émissions de CO2 réduites. Une température plus élevée signifie une efficacité plus élevée; cependant, des taux de corrosion plus élevés se produisent dans une atmosphère de vapeur lorsque des aciers ferritiques, ferrito‐martensitiques ou moyennement Cr–Ni sont utilisés.
Les matériaux qui ont été développés il y a plus de 50 à 60 ans ne sont plus actuellement adaptés aux régimes ultra-supercritiques en raison d’une faible résistance à la corrosion et de propriétés de fluage et de résistance à haute température inadéquates. Ces technologies nécessitent des aciers austénitiques avancés et des alliages à base de nickel (Ni) avec une résistance supérieure à l’oxydation à la vapeur.
Fatigue
En science des matériaux, la fatigue est l’affaiblissement d’un matériau causé par un chargement cyclique qui entraîne des dommages structurels progressifs, cassants et localisés. Une fois qu’une fissure s’est amorcée, chaque cycle de chargement fera croître la fissure d’une petite quantité, même lorsque des contraintes alternées ou cycliques répétées sont d’une intensité considérablement inférieure à la résistance normale. Les contraintes peuvent être dues à des vibrations ou à des cycles thermiques. Les dommages de fatigue sont causés par:
- action simultanée de contraintes cycliques,
- contrainte de traction (qu’elle soit appliquée directement ou résiduelle),
- souche plastique.
Si l’un de ces trois éléments n’est pas présent, une fissure de fatigue ne s’amorcera pas et ne se propagera pas. La majorité des défaillances techniques sont causées par la fatigue.
Bien que la fracture soit de type fragile, sa propagation peut prendre un certain temps, en fonction à la fois de l’intensité et de la fréquence des cycles de stress. Néanmoins, il y a très peu, voire aucun, avertissement avant la panne si la fissure n’est pas remarquée. Le nombre de cycles nécessaires pour provoquer une rupture par fatigue à une contrainte maximale particulière est généralement assez important, mais il diminue à mesure que la contrainte augmente. Pour certains aciers doux, les contraintes cycliques peuvent être poursuivies indéfiniment à condition que la contrainte maximale (parfois appelée résistance à la fatigue) soit inférieure à la valeur limite d’endurance. Le type de fatigue le plus préoccupant dans les centrales nucléaires est la fatigue thermique. La fatigue thermique peut provenir de contraintes thermiques produites par des changements cycliques de température. Les gros composants comme le pressuriseur, la cuve du réacteur,
La science des matériaux:
- Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 et 2. Janvier 1993.
- Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
- William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
- En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
- Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
- González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
- Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
- JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.
Nous espérons que cet article, Problèmes matériels des turbines , vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.