Facebook Instagram Youtube Twitter

O que é Aço Temperado – Aço Temperado – Definição

Aço temperado fresco é muito frágil se o teor de carbono for superior a aproximadamente 0,2 a 0,3%. É tão frágil que não pode ser usado para a maioria das aplicações. Essa fragilidade pode ser removida (com alguma perda de dureza) se o aço temperado for levemente aquecido em um processo conhecido como revenimento. A têmpera é realizada pelo aquecimento de um aço martensítico a uma temperatura abaixo da eutetóide por um período de tempo especificado (por exemplo, entre 250°C e 650°C).

O termo têmpera refere-se a um tratamento térmico no qual um material é rapidamente resfriado em água, óleo ou ar para obter certas propriedades do material, especialmente dureza. Em ligas ferrosas, a têmpera é mais comumente usada para endurecer o aço pela introdução de martensita, enquanto as ligas não ferrosas geralmente se tornam mais macias do que o normal. Acima desta temperatura crítica, um metal é parcialmente ou totalmente austenitizado, a taxa de resfriamento do aço deve ser rápida para permitir que a austenita se transforme em bainita ou martensita metaestável.

A seleção de um meio de têmpera depende da temperabilidade da liga em particular, da espessura e forma da seção envolvida e das taxas de resfriamento necessárias para atingir a microestrutura desejada.

têmperaA martensita é uma estrutura metaestável muito dura com uma estrutura cristalina tetragonal de corpo centrado (BCT). A martensita é formada nos aços quando a taxa de resfriamento da austenita é tão alta que os átomos de carbono não têm tempo de se difundir para fora da estrutura cristalina em quantidades suficientes para formar a cementita (Fe3C). Portanto, é um produto de transformação sem difusão. Qualquer difusão resulta na formação de fases de ferrita e cementita. É nomeado após o metalúrgico alemão Adolf Martens (1850-1914).

A microestrutura da martensita nos aços tem diferentes morfologias e pode aparecer como martensita lath ou martensita plana. Para o aço com 0–0,6% de carbono, a martensita tem a aparência de ripas e é chamada de martensita de ripas. Para aço com mais de 1% de carbono, formará uma estrutura semelhante a uma placa chamada martensita de placa. A martensita de placa, como o nome indica, forma-se como cristais lenticulares (em forma de lente) com um padrão em zigue-zague de placas menores. Entre essas duas porcentagens, a aparência física dos grãos é uma mistura das duas. A resistência da martensita é reduzida à medida que a quantidade de austenita retida aumenta.

Transformação Martensítica

O endurecimento por transformação, também conhecido como endurecimento por transformação martensítica, é um dos métodos mais comuns de endurecimento, que é usado principalmente para aços (isto é, aços carbono e aços inoxidáveis). A transformação martensítica não é, entretanto, exclusiva das ligas ferro-carbono. É encontrado em outros sistemas e é caracterizado, em parte, pela transformação sem difusão.

Os aços martensíticos usam predominantemente níveis mais altos de C e Mn, juntamente com tratamento térmico para aumentar a resistência. O produto acabado terá uma microestrutura duplex de ferrita com vários níveis de martensita degenerada. Isso permite vários níveis de força. Na metalurgia, a têmpera é mais comumente usada para endurecer o aço pela introdução de martensita. Existe um equilíbrio entre dureza e tenacidade em qualquer aço; quanto mais duro o aço, menos duro ou resistente a impactos ele é, e quanto mais resistente a impactos, menos duro ele é.

A martensita é produzida a partir da austenita como resultado da têmpera ou outra forma de resfriamento rápido. A austenita em ligas de ferro-carbono geralmente está presente apenas acima da temperatura eutetóide crítica (723°C) e abaixo de 1500°C, dependendo do teor de carbono. No caso de taxas normais de resfriamento, conforme a austenita esfria, o carbono se difunde para fora da austenita e forma carboneto de ferro rico em carbono (cementita) e deixa para trás a ferrita pobre em carbono. Dependendo da composição da liga, uma camada de ferrita e cementita, chamada perlita, pode se formar. Mas no caso de resfriamento rápido, o carbono não tem tempo suficiente para se difundir e se transforma em uma forma tetragonal de corpo centrado altamente deformada chamada martensita que é supersaturada com carbono. Todos os átomos de carbono permanecem como impurezas intersticiais na martensita.

Exemplo: Aço Inoxidável Martensítico

Aço inoxidável martensíticoOs aços inoxidáveis ​​martensíticos são semelhantes aos aços ferríticos por serem baseados em cromo, mas têm níveis de carbono mais altos de até 1%. Às vezes, eles são classificados como aços inoxidáveis ​​martensíticos de baixo carbono e alto carbono. Eles contêm 12 a 14% de cromo, 0,2 a 1% de molibdênio e nenhuma quantidade significativa de níquel. Quantidades mais altas de carbono permitem que eles sejam endurecidos e revenidos de maneira semelhante aos aços carbono e de baixa liga. Possuem moderada resistência à corrosão, mas são considerados duros, fortes, levemente quebradiços. Eles são magnéticos e podem ser testados de forma não destrutiva usando o método de inspeção por partículas magnéticas, ao contrário do aço inoxidável austenítico. Um aço inoxidável martensítico comum é o AISI 440C, que contém 16 a 18% de cromo e 0,95 a 1,2% de carbono. O aço inoxidável grau 440C é usado nas seguintes aplicações: blocos padrão, talheres, rolamentos e pistas de esferas, moldes e matrizes, facas.

Martensita Temperada

A capacidade relativa de uma liga ferrosa de formar martensita é chamada de temperabilidade. A temperabilidade é comumente medida como a distância abaixo de uma superfície temperada na qual o metal exibe uma dureza específica de 50 HRC, por exemplo, ou uma porcentagem específica de martensita na microestrutura. A maior dureza de um aço perlítico é de 43 HRC, enquanto a martensita pode atingir 72 HRC. Martensita fresca é muito frágil se o teor de carbono for superior a aproximadamente 0,2 a 0,3%. É tão frágil que não pode ser usado para a maioria das aplicações. Essa fragilidade pode ser removida (com alguma perda de dureza) se o aço temperado for levemente aquecido em um processo conhecido como revenimento. A têmpera é realizada aquecendo um aço martensítico a uma temperatura abaixo do eutetóide por um período de tempo especificado (por exemplo, entre 250°C e 650°C).

Este tratamento térmico de revenimento permite, por processos de difusão, a formação de martensita revenida, conforme a reação:

martensita (BCT, monofásica) → martensita temperada (ferrita + Fe3C fases)

onde a martensita BCT monofásica, que é supersaturada com carbono, se transforma na martensita revenida, composta pelas fases estáveis ​​de ferrita e cementita. Sua microestrutura é semelhante à microestrutura da esferoide, mas neste caso a martensita revenida contém partículas de cementita extremamente pequenas e uniformemente dispersas incorporadas em uma matriz contínua de ferrita. A martensita temperada pode ser quase tão dura e forte quanto a martensita, mas com ductilidade e tenacidade substancialmente aumentadas.

Referências:
Ciência dos Materiais:

Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Veja acima:
Tratamento Térmico

Esperamos que este artigo, Aço temperado – Aço temperado, ajude você. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.