Facebook Instagram Youtube Twitter

O que é densidade de ligas resistentes à corrosão – Definição

A densidade das ligas resistentes à corrosão varia significativamente. A densidade da liga de alumínio típica é de 2,7 g/cm3 (liga 6061). Mas, para alcançar uma notável resistência à corrosão, o titânio é o material de escolha.

bronze de alumínioAs ligas resistentes à corrosão, como o próprio nome indica, são ligas com maior resistência à corrosão. Alguns metais ferrosos e muitos não ferrosos e ligas são amplamente utilizados em ambientes corrosivos. Em todos os casos, depende fortemente de determinado ambiente e outras condições. Ligas resistentes à corrosão são usadas para tubulações de água e muitas aplicações químicas e industriais. No caso de ligas ferrosas, estamos falando de aços inoxidáveis ​​e, até certo ponto, de ferros fundidos. Mas algumas ligas não ferrosas resistentes à corrosão exibem notável resistência à corrosão e, portanto, podem ser usadas para muitos propósitos especiais. Existem duas razões principais pelas quais os materiais não ferrosos são preferidos aos aços e aços inoxidáveis ​​para muitas dessas aplicações. Por exemplo, muitos dosos metais não ferrosos e as ligas possuem uma resistência muito maior à corrosão do que os aços-liga disponíveis e os tipos de aço inoxidável. Em segundo lugar, uma alta relação resistência/peso ou alta condutividade térmica e elétrica pode fornecer uma vantagem distinta sobre uma liga ferrosa.

Densidade de Ligas Resistentes à Corrosão

A densidade do bronze de alumínio típico é de 7,45 g/cm3 (UNS C95400).

A densidade da superliga típica é de 8,22 g/cm3 (Inconel 718).

A densidade da liga de titânio típica é de 4,51 g/cm3 (Grau 2).

A densidade da liga de alumínio típica é de 2,7 g/cm3 (liga 6061).

A densidade do aço inoxidável típico é de 8,0 g/cm3 (aço 304).

A densidade é definida como a massa por unidade de volume. É uma propriedade intensiva, que é matematicamente definida como massa dividida por volume:

ρ = m/V

Em palavras, a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância. A unidade SI padrão é quilogramas por metro cúbico (kg/m3). A unidade padrão inglesa é libras-massa por pé cúbico (lbm/ft3).

Como a densidade (ρ) de uma substância é a massa total (m) dessa substância dividida pelo volume total (V) ocupado por essa substância, é óbvio que a densidade de uma substância depende fortemente de sua massa atômica e também de a densidade do número atômico (N; átomos/cm3),

  • Peso Atômico. A massa atômica é transportada pelo núcleo atômico, que ocupa apenas cerca de 10-12 do volume total do átomo ou menos, mas contém toda a carga positiva e pelo menos 99,95% da massa total do átomo. Portanto, é determinado pelo número de massa (número de prótons e nêutrons).
  • Densidade de Número Atômico. A densidade de número atômico (N; átomos/cm3), que está associada aos raios atômicos, é o número de átomos de um determinado tipo por unidade de volume (V; cm3) do material. A densidade do número atômico (N; átomos/cm3) de um material puro com peso atômico ou molecular (M; gramas/mol) e a densidade do material (⍴; grama/cm3) é facilmente calculada a partir da seguinte equação usando o número de Avogadro (NA = 6,022 ×1023 átomos ou moléculas por mol):Densidade do Número Atômico
  • Estrutura de cristal. A densidade da substância cristalina é significativamente afetada por sua estrutura cristalina. A estrutura FCC, junto com seu parente hexagonal (hcp), tem o fator de empacotamento mais eficiente (74%). Metais contendo estruturas FCC incluem austenita, alumínio, cobre, chumbo, prata, ouro, níquel, platina e tório.

Referências:
Ciência dos Materiais:

Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Veja acima:
Ligas resistentes à corrosão

Esperamos que este artigo, Densidade de ligas resistentes à corrosão, ajude você. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.