Ligas de magnésio são misturas de magnésio e outros metais de liga, geralmente alumínio, zinco, silício, manganês, cobre e zircônio. Como a característica mais notável do magnésio é sua densidade, 1,7 g/cm3, suas ligas são usadas onde o peso leve é uma consideração importante (por exemplo, em componentes de aeronaves). O magnésio tem o ponto de fusão mais baixo (923 K (1202°F)) de todos os metais alcalino-terrosos. O magnésio puro tem uma estrutura cristalina HCP, é relativamente macio e tem um baixo módulo de elasticidade: 45 GPa. As ligas de magnésio também possuem uma estrutura treliçada hexagonal, que afeta as propriedades fundamentais dessas ligas. À temperatura ambiente, o magnésio e suas ligas são difíceis de realizar trabalho a frio devido ao fato de que a deformação plástica da rede hexagonal é mais complicada do que em metais de rede cúbica como alumínio, cobre e aço. Portanto, as ligas de magnésio são normalmente usadas como ligas fundidas. Apesar da natureza reativa do pó de magnésio puro, o magnésio metálico e suas ligas têm boa resistência à corrosão.
O alumínio é o elemento de liga mais comum. Alumínio, zinco, zircônio e tório promovem o endurecimento por precipitação: o manganês melhora a resistência à corrosão; e o estanho melhora a fundibilidade.
Devemos acrescentar que o magnésio puro é altamente inflamável, especialmente quando em pó ou raspado em tiras finas, embora seja difícil de inflamar em massa ou a granel. Produz luz branca intensa e brilhante quando queima. As temperaturas de chama do magnésio e de algumas ligas de magnésio podem atingir 3100°C. O magnésio fundido ou queimado reage violentamente com a água. Uma vez acesos, esses incêndios são difíceis de extinguir, porque a combustão continua em nitrogênio (formando nitreto de magnésio), dióxido de carbono (formando óxido de magnésio e carbono) e água. A queima de magnésio pode ser extinta usando um extintor de pó químico seco Classe D. Sua inflamabilidade é bastante reduzida por uma pequena quantidade de cálcio na liga.
Propriedades das Ligas de Magnésio
As propriedades dos materiais são propriedades intensivas, ou seja, independem da quantidade de massa e podem variar de um lugar para outro dentro do sistema a qualquer momento. A base da ciência dos materiais envolve estudar a estrutura dos materiais e relacioná-los com suas propriedades (mecânicas, elétricas, etc.). Uma vez que um cientista de materiais conheça essa correlação estrutura-propriedade, ele poderá estudar o desempenho relativo de um material em uma determinada aplicação. Os principais determinantes da estrutura de um material e, portanto, de suas propriedades são seus elementos químicos constituintes e a maneira como ele foi processado em sua forma final.
Propriedades Mecânicas das Ligas de Magnésio
Os materiais são freqüentemente escolhidos para várias aplicações porque possuem combinações desejáveis de características mecânicas. Para aplicações estruturais, as propriedades do material são cruciais e os engenheiros devem levá-las em consideração.
Resistência das Ligas de Magnésio
Na mecânica dos materiais, a resistência de um material é sua capacidade de suportar uma carga aplicada sem falha ou deformação plástica. A resistência dos materiais considera basicamente a relação entre as cargas externas aplicadas a um material e a deformação resultante ou mudança nas dimensões do material. A resistência de um material é sua capacidade de suportar essa carga aplicada sem falha ou deformação plástica.
Resistência à tração
A resistência à tração final do Elektron 21 – UNS M12310 é de cerca de 280 MPa.
A resistência à tração final é o máximo na curva de tensão-deformação de engenharia. Isso corresponde à tensão máxima que pode ser sustentado por uma estrutura em tensão. A resistência à tração final é muitas vezes abreviada para “resistência à tração” ou mesmo para “o máximo”. Se essa tensão for aplicada e mantida, ocorrerá fratura. Freqüentemente, esse valor é significativamente maior do que o limite de escoamento (até 50 a 60 por cento a mais do que o rendimento de alguns tipos de metais). Quando um material dúctil atinge sua resistência máxima, ele sofre estricção onde a área da seção transversal é reduzida localmente. A curva tensão-deformação não contém tensão maior do que a resistência máxima. Mesmo que as deformações possam continuar a aumentar, a tensão geralmente diminui após o limite de resistência ter sido alcançado. É uma propriedade intensiva; portanto, seu valor não depende do tamanho do corpo de prova. Porém, depende de outros fatores, como o preparo do corpo de prova, temperatura do ambiente de teste e do material. A resistência máxima à tração varia de 50 MPa para um alumínio até 3000 MPa para aços de alta resistência.
Força de Rendimento
A resistência ao escoamento do Elektron 21 – UNS M12310 é de cerca de 145 MPa.
O ponto de escoamento é o ponto em uma curva tensão-deformação que indica o limite do comportamento elástico e o início do comportamento plástico. Força de rendimento ou tensão de escoamento é a propriedade do material definida como a tensão na qual um material começa a se deformar plasticamente, enquanto o ponto de escoamento é o ponto onde começa a deformação não linear (elástica + plástica). Antes do ponto de escoamento, o material se deformará elasticamente e retornará à sua forma original quando a tensão aplicada for removida. Uma vez ultrapassado o ponto de escoamento, alguma fração da deformação será permanente e irreversível. Alguns aços e outros materiais exibem um comportamento denominado fenômeno do ponto de escoamento. As resistências ao escoamento variam de 35 MPa para um alumínio de baixa resistência a mais de 1400 MPa para aços de resistência muito alta.
Módulo de elasticidade de Young
O módulo de elasticidade de Young do Elektron 21 – UNS M12310 é de cerca de 45 GPa.
O módulo de elasticidade de Young é o módulo de elasticidade para tensão de tração e compressão no regime de elasticidade linear de uma deformação uniaxial e geralmente é avaliado por ensaios de tração. Até uma tensão limite, um corpo poderá recuperar suas dimensões com a retirada da carga. As tensões aplicadas fazem com que os átomos em um cristal se movam de sua posição de equilíbrio. Todos os átomos são deslocados na mesma quantidade e ainda mantêm sua geometria relativa. Quando as tensões são removidas, todos os átomos retornam às suas posições originais e nenhuma deformação permanente ocorre. De acordo com a lei de Hooke, a tensão é proporcional à deformação (na região elástica), e a inclinação é o módulo de Young. O módulo de Young é igual à tensão longitudinal dividida pela deformação.
Dureza das Ligas de Magnésio
A dureza Brinell do Elektron 21 – UNS M12310 é de aproximadamente 70 HB.
O teste de dureza Rockwell é um dos testes de dureza de indentação mais comuns, que foi desenvolvido para testes de dureza. Em contraste com o teste Brinell, o testador Rockwell mede a profundidade de penetração de um penetrador sob uma grande carga (carga principal) em comparação com a penetração feita por uma pré-carga (carga menor). A carga menor estabelece a posição zero. A carga principal é aplicada e, em seguida, removida, mantendo a carga secundária. A diferença entre a profundidade de penetração antes e depois da aplicação da carga principal é usada para calcular o número de dureza Rockwell. Ou seja, a profundidade de penetração e a dureza são inversamente proporcionais. A principal vantagem da dureza Rockwell é sua capacidade de exibir valores de dureza diretamente. O resultado é um número adimensional anotado como HRA, HRB, HRC, etc., onde a última letra é a respectiva escala Rockwell.
O teste Rockwell C é realizado com um penetrador Brale (cone de diamante de 120°) e uma carga maior de 150kg.
Propriedades Térmicas das Ligas de Magnésio
As propriedades térmicas dos materiais referem-se à resposta dos materiais às mudanças de thermodynamics/thermodynamic-properties/what-is-temperature-physics/”>temperatura e à aplicação de calor. À medida que um sólido absorve thermodynamics/what-is-energy-physics/”>energia na forma de calor, sua temperatura aumenta e suas dimensões aumentam. Mas diferentes materiais reagem à aplicação de calor de forma diferente.
A capacidade térmica, a expansão térmica e a condutividade térmica são propriedades frequentemente críticas no uso prático de sólidos.
Ponto de Fusão das Ligas de Magnésio
O ponto de fusão do Elektron 21 – UNS M12310 é de cerca de 550 – 640°C.
Em geral, a fusão é uma mudança de fase de uma substância da fase sólida para a fase líquida. O ponto de fusão de uma substância é a temperatura na qual ocorre essa mudança de fase. O ponto de fusão também define uma condição na qual o sólido e o líquido podem existir em equilíbrio.
Condutividade Térmica de Ligas de Magnésio
A condutividade térmica do Elektron 21 – UNS M12310 é de 116 W/(mK).
As características de transferência de calor de um material sólido são medidas por uma propriedade chamada condutividade térmica, k (ou λ), medida em W/mK. É uma medida da capacidade de uma substância de transferir calor através de um material por condução. Observe que a lei de Fourier se aplica a toda matéria, independentemente de seu estado (sólido, líquido ou gasoso), portanto, também é definida para líquidos e gases.
A condutividade térmica da maioria dos líquidos e sólidos varia com a temperatura. Para vapores, também depende da pressão. Em geral:
A maioria dos materiais são quase homogêneos, portanto podemos geralmente escrever k = k (T). Definições semelhantes estão associadas às condutividades térmicas nas direções y e z (ky, kz), mas para um material isotrópico a condutividade térmica é independente da direção de transferência, kx = ky = kz = k.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.
Esperamos que este artigo, Propriedades das Ligas de Magnésio, o ajude. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.