Natural boron consists primarily of two stable isotopes, 11B (80.1%) and 10B (19.9%). In nuclear industry boron is commonly used as a neutron absorber due to the high neutron cross-section of isotope 10B. Its (n,alpha) reaction cross-section for thermal neutrons is about 3840 barns (for 0.025 eV neutron). Isotope 11B has absorption cross-section for thermal neutrons about 0.005 barns (for 0.025 eV neutron). Most of (n,alpha) reactions of thermal neutrons are 10B(n,alpha)7Li reactions accompanied by 0.48 MeV gamma emission.
Moreover, isotope 10B has high (n,alpha) reaction cross-section along the entire neutron energy spectrum. The cross-sections of most other elements becomes very small at high energies as in the case of cadmium. The cross-section of 10B decreases monotonically with energy. For fast neutrons its cross-section is on the order of barns.
Boron as the neutron absorber has another positive property. The reaction products (after a neutron absorption), helium and lithium, are stable isotopes. Therefore there are minimal problems with decay heating of control rods or burnable absorbers used in the reactor core.
On the other hand production of helium may lead to significant increase in pressure (under rod cladding), when used as the absorbing material in control rods. Moreover 10B is the principal source of radioactive tritium in primary circuit of all PWRs (which use boric acid as a chemical shim), because reactions with neutrons can rarely lead to formation of radioactive tritium via:
10B(n,2x alpha)3H threshold reaction (~1.2 MeV)
and
10B(n,alpha)7Li(n,n+alpha)3H threshold reaction (~3 MeV).
See also: Tritium
Boron letdown curve (chemical shim) and boron 10 depletion during a 12-month fuel cycle.
At the beginning of specific fuel cycle concentration of boric acid is highest. At the end of this cycle concentration of boric acid is almost zero and a reactor must be refueled, because there is no positive reactivity that can be inserted to compensate negative reactivity of fuel burnup (increase in reactor slagging).
We hope, this article, Boron 10, helps you. If so, give us a like in the sidebar. Main purpose of this website is to help the public to learn some interesting and important information about materials and their properties.