Facebook Instagram Youtube Twitter

¿Cuáles son las propiedades térmicas de las aleaciones resistentes a la corrosión? Definición

Propiedades térmicas de las aleaciones resistentes a la corrosión. El punto de fusión más alto de las aleaciones resistentes a la corrosión tiene titanio comercialmente puro – Grado 2, que es de alrededor de 1660°C. La conductividad térmica más alta tiene la aleación de aluminio 6061, que es 150 W/(mK).

bronce de aluminioLas aleaciones resistentes a la corrosión, como su nombre lo indica, son aleaciones con mayor resistencia a la corrosión. Algunos metales y aleaciones ferrosos y muchos no ferrosos se utilizan ampliamente en entornos corrosivos. En todos los casos, depende en gran medida de cierto entorno y otras condiciones. Las aleaciones resistentes a la corrosión se utilizan para tuberías de agua y muchas aplicaciones químicas e industriales. En el caso de las aleaciones ferrosas, hablamos de aceros inoxidables y, en cierta medida, de fundiciones. Pero algunas aleaciones no ferrosas resistentes a la corrosión exhiben una notable resistencia a la corrosión y, por lo tanto, pueden usarse para muchos propósitos especiales. Hay dos razones principales por las que se prefieren los materiales no ferrosos a los aceros y aceros inoxidables para muchas de estas aplicaciones. Por ejemplo, muchos de losLos metales y aleaciones no ferrosos poseen una resistencia a la corrosión mucho mayor que los aceros aleados y los grados de acero inoxidable disponibles. En segundo lugar, una alta relación resistencia-peso o una alta conductividad térmica y eléctrica pueden proporcionar una clara ventaja sobre una aleación ferrosa.

Propiedades térmicas de las aleaciones resistentes a la corrosión

Las propiedades térmicas de los materiales se refieren a la respuesta de los materiales a los cambios de  temperatura y a la aplicación de calor. A medida que un sólido absorbe energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.

La capacidad caloríficala expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.

Punto de fusión de las aleaciones resistentes a la corrosión

El punto de fusión del bronce de aluminio – UNS C95400 es de alrededor de 1030°C.

Punto de fusión de la superaleación: el acero Inconel 718 es de alrededor de 1400°C.

El punto de fusión del titanio comercialmente puro – Grado 2 es de alrededor de 1660°C.

El punto de fusión de la aleación de aluminio 6061 es de alrededor de 600°C.

El punto de fusión del acero inoxidable – acero tipo 304 es de alrededor de 1450°C.

En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio.

Conductividad térmica de aleaciones resistentes a la corrosión

La conductividad térmica del bronce de aluminio – UNS C95400 es 59 W/(mK).

La conductividad térmica de la superaleación – Inconel 718 es 6,5 W/(mK).

La conductividad térmica del titanio comercialmente puro – Grado 2 es de 16 W/(mK).

La conductividad térmica de la aleación de aluminio 6061 es de 150 W/(mK).

La conductividad térmica del acero inoxidable – tipo 304 es de 20 W/(mK).

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica , k (o λ), medida en  W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción. Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T). Se asocian definiciones similares con las conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Aleaciones resistentes a la corrosión

Esperamos que este artículo, Propiedades térmicas de las aleaciones resistentes a la corrosión , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.