Facebook Instagram Youtube Twitter

¿Qué es la brea de cobre resistente a los electrolitos? – ETP – Características y usos – Definición

El cobre electrolítico de brea tenaz, UNS C11000, es cobre puro (con un máximo de 0,0355% de impurezas) refinado mediante un proceso de refinado electrolítico y es el grado de cobre más utilizado en todo el mundo. ETP tiene una clasificación de conductividad mínima del 100% IACS

El cobre de alta pureza es un metal blando, maleable y dúctil con una conductividad térmica y eléctrica muy alta. Una superficie recién expuesta de cobre puro tiene un color naranja rojizo. El cobre se utiliza como conductor de calor y electricidad, como material de construcción y como componente de varias aleaciones metálicas, como la plata esterlina utilizada en joyería, el cuproníquel utilizado para fabricar piezas y monedas marinas, y el constantano utilizado en galgas extensométricas y termopares. para medir la temperatura. El cobre de alta pureza tiene una resistencia máxima de aproximadamente 210 MPa y un límite elástico de 33 MPa, lo que limita su capacidad de uso en aplicaciones industriales. Pero de forma similar a otras aleaciones, el cobre puede reforzarse. El principal mecanismo de refuerzo es la aleación en aleaciones a base de Cu.

Propiedades del Cobre

El cobre es un material blando, resistente, dúctil y maleable. Estas propiedades hacen que el cobre sea extremadamente adecuado para el conformado de tubos, trefilado, hilado y embutido. Las otras propiedades clave que exhibe el cobre y sus aleaciones incluyen:

  • Excelente conductividad térmica. El cobre tiene una clasificación de conductividad térmica un 60% más alta que el aluminio, por lo que es más capaz de reducir los puntos calientes térmicos en los sistemas de cableado eléctrico. Las conductividades eléctricas y térmicas de los metales se originan por el hecho de que sus electrones externos están deslocalizados .
  • Excelente conductividad eléctrica. La conductividad del cobre es el 97% de la de la plata. Debido a su costo mucho menor y mayor abundancia, el cobre ha sido tradicionalmente el material estándar utilizado para aplicaciones de transmisión de electricidad. Sin embargo, el aluminio se usa generalmente en líneas eléctricas aéreas de alto voltaje porque tiene aproximadamente la mitad del peso y el costo más bajo de un cable de cobre de resistencia comparable. A una temperatura dada, las conductividades térmica y eléctrica de los metales son proporcionales, pero el aumento de la temperatura aumenta la conductividad térmica al tiempo que disminuye la conductividad eléctrica. Este comportamiento se cuantifica en la ley de Wiedemann-Franz.
  • Buena resistencia a la corrosión. El cobre no reacciona con el agua, pero reacciona lentamente con el oxígeno atmosférico para formar una capa de óxido de cobre marrón-negro que, a diferencia del óxido que se forma en el hierro en el aire húmedo, protege el metal subyacente de una mayor corrosión (pasivación). Las aleaciones de cobre-níquel, aluminio, latón y aluminio demuestran una resistencia superior a la corrosión del agua salada.
  • Buena resistencia a la bioincrustación
  • Buena maquinabilidad. El mecanizado de cobre es posible, aunque se prefieren las aleaciones por su buena maquinabilidad en la creación de piezas complejas.
  • Retención de propiedades mecánicas y eléctricas a temperaturas criogénicas
  • Diamagnético

Cobre de brea tenaz a los electrolitos (ETP)

cobre puroEl cobre electrolítico de brea tenaz, UNS C11000, es cobre puro (con un máximo de 0,0355% de impurezas) refinado mediante un proceso de refinado electrolítico y es el grado de cobre más utilizado en todo el mundo. ETP tiene una clasificación de conductividad mínima de 100% IACS y se requiere que sea 99,9% puro. Tiene de 0,02% a 0,04% de oxígeno contenido (típico). El cableado eléctrico es el mercado más importante para la industria del cobre. Esto incluye cableado de energía estructural, cable de distribución de energía, alambre para electrodomésticos, cable de comunicaciones, alambre y cable automotriz y alambre magnético. Aproximadamente la mitad de todo el cobre extraído se utiliza para conductores de cables y alambres eléctricos. El cobre puro tiene la mejor conductividad eléctrica y térmica de cualquier metal comercial. La conductividad del cobre es el 97% de la de la plata. Debido a su costo mucho menor y mayor abundancia, el cobre ha sido tradicionalmente el material estándar utilizado para aplicaciones de transmisión de electricidad.

Precio de la fuerza de la densidad de las propiedades de ETP

Resumen

Nombre ETP
Fase en STP N / A
Densidad 8890 kg/m3
Resistencia a la tracción 250 MPa
Límite de elasticidad 60-300 MPa
Módulo de Young 120 GPa
Dureza Brinell 70 BHN
Punto de fusion 1085°C
Conductividad térmica 394 W/mK
Capacidad calorífica 380 J/gK
Precio 10 $/kg

99,9%Cobre en la tabla periódica

Según la Asociación de Desarrollo del Cobre:

„El término ‘brea tenaz’ se origina en el momento en que el cobre fundido, después del refinado, se vertía en lingoteras. Durante el refinado, el cobre se oxidó para eliminar las impurezas y luego se redujo con hidrógeno para dar el nivel de oxígeno correcto. Para monitorear este proceso, se tomó una pequeña muestra y se observó la superficie de solidificación. Si la superficie se hundía, había demasiado oxígeno; si se elevaba, había demasiado hidrógeno. Si estaba nivelado (tono correcto), el oxígeno era correcto y las propiedades eran buenas; en otras palabras, ‘duro’, por lo tanto, tono duro «.

Fuente: https://copperalliance.org

Propiedades del cobre de brea tenaz electrolítica (ETP)

Las propiedades de los materiales son propiedades intensivas, lo que significa que son independientes de la cantidad de masa y pueden variar de un lugar a otro dentro del sistema en cualquier momento. La base de la ciencia de los materiales consiste en estudiar la estructura de los materiales y relacionarlos con sus propiedades (mecánicas, eléctricas, etc.). Una vez que un científico de materiales conoce esta correlación estructura-propiedad, puede pasar a estudiar el rendimiento relativo de un material en una aplicación determinada. Los principales determinantes de la estructura de un material y, por tanto, de sus propiedades son sus elementos químicos constituyentes y la forma en que se ha procesado hasta su forma final.

Propiedades mecánicas del cobre de brea tenaz electrolítica (ETP)

Los materiales se eligen con frecuencia para diversas aplicaciones porque tienen combinaciones deseables de características mecánicas. Para aplicaciones estructurales, las propiedades de los materiales son cruciales y los ingenieros deben tenerlas en cuenta.

Resistencia de las aleaciones de cobre

En mecánica de materiales, la resistencia de un material es su capacidad para soportar una carga aplicada sin fallas ni deformaciones plásticas. La resistencia de los materiales básicamente considera la relación entre las cargas externas aplicadas a un material y la deformación resultante o cambio en las dimensiones del material. La resistencia de un material es su capacidad para soportar esta carga aplicada sin fallas ni deformaciones plásticas.

Resistencia a la tracción

La máxima resistencia a la tracción del cobre de brea tenaz electrolítica (ETP) es de aproximadamente 250 MPa.

Resistencia a la fluencia - Resistencia máxima a la tracción - Tabla de materialesLa máxima resistencia a la tracción es la máxima en la curva de ingeniería de tensión-deformación. Esto corresponde a la tensión máxima que puede ser sostenido por una estructura en tensión. La resistencia máxima a la tracción a menudo se reduce a «resistencia a la tracción» o incluso a «máxima». Si se aplica y se mantiene esta tensión, se producirá una fractura. A menudo, este valor es significativamente mayor que el límite elástico (entre un 50 y un 60 por ciento más que el rendimiento para algunos tipos de metales). Cuando un material dúctil alcanza su máxima resistencia, experimenta un estrechamiento donde el área de la sección transversal se reduce localmente. La curva de tensión-deformación no contiene una tensión mayor que la resistencia máxima. Aunque las deformaciones pueden seguir aumentando, la tensión suele disminuir después de que se ha alcanzado la resistencia máxima. Es una propiedad intensiva; por lo tanto, su valor no depende del tamaño de la muestra de prueba. Sin embargo, depende de otros factores, como la preparación de la muestra, temperatura del entorno de prueba y del material. Las resistencias a la tracción máxima varían desde 50 MPa para un aluminio hasta 3000 MPa para aceros de muy alta resistencia.

Límite de elasticidad

La resistencia a la prueba del cobre de brea tenaz electrolítica (ETP) se encuentra entre 60 y 300 MPa.

El punto de fluencia es el punto en una curva de tensión-deformación que indica el límite del comportamiento elástico y el comportamiento plástico inicial. Límite de elasticidad es la propiedad del material definida como el esfuerzo en el que un material comienza a deformarse plásticamente, mientras que el límite elástico es el punto donde comienza la deformación no lineal (elástica + plástica). Antes del límite elástico, el material se deformará elásticamente y volverá a su forma original cuando se elimine la tensión aplicada. Una vez que se supera el límite de fluencia, una fracción de la deformación será permanente e irreversible. Algunos aceros y otros materiales exhiben un comportamiento denominado fenómeno de límite elástico. Los límites de elasticidad varían de 35 MPa para un aluminio de baja resistencia a más de 1400 MPa para aceros de muy alta resistencia.

Módulo de Young

El módulo de Young del cobre de brea tenaz a los electrolitos (ETP) es de aproximadamente 120 GPa.

El módulo de Young es el módulo de elasticidad para esfuerzos de tracción y compresión en el régimen de elasticidad lineal de una deformación uniaxial y generalmente se evalúa mediante ensayos de tracción. Hasta una tensión límite, un cuerpo podrá recuperar sus dimensiones al retirar la carga. Las tensiones aplicadas hacen que los átomos de un cristal se muevan desde su posición de equilibrio. Todos los átomos se desplazan en la misma cantidad y aún mantienen su geometría relativa. Cuando se eliminan las tensiones, todos los átomos vuelven a sus posiciones originales y no se produce ninguna deformación permanente. Según la ley de Hooke, la tensión es proporcional a la deformación (en la región elástica) y la pendiente es el módulo de Young. El módulo de Young es igual a la tensión longitudinal dividida por la deformación.

Dureza del cobre de brea tenaz electrolítica (ETP)

La dureza Vickers del cobre de brea tenaz electrolítica (ETP) depende en gran medida del temple del material, pero está entre 50 y 150 HV.

Número de dureza Brinell

La prueba de dureza Rockwell  es una de las pruebas de dureza por indentación más comunes, que se ha desarrollado para las pruebas de dureza. A diferencia de la prueba de Brinell, el probador Rockwell mide la profundidad de penetración de un penetrador bajo una carga grande (carga mayor) en comparación con la penetración realizada por una precarga (carga menor). La carga menor establece la posición cero. Se aplica la carga principal y luego se retira mientras se mantiene la carga menor. La diferencia entre la profundidad de penetración antes y después de la aplicación de la carga principal se utiliza para calcular el  número de dureza Rockwell. Es decir, la profundidad de penetración y la dureza son inversamente proporcionales. La principal ventaja de la dureza Rockwell es su capacidad para  mostrar los valores de dureza directamente. El resultado es un número adimensional anotado como  HRA, HRB, HRC, etc., donde la última letra es la escala de Rockwell respectiva.

La prueba Rockwell C se realiza con un penetrador Brale (cono de diamante de 120°) y una carga mayor de 150 kg.

Propiedades térmicas del cobre de brea tenaz electrolítica (ETP)

Las propiedades térmicas  de los materiales se refieren a la respuesta de los materiales a los cambios de  temperatura y a la aplicación de calor. A medida que un sólido absorbe energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.

La capacidad caloríficala expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.

Punto de fusión del cobre de brea tenaz electrolítica (ETP)

El punto de fusión del cobre de brea tenaz electrolítica (ETP) es de alrededor de 1085°C.

En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio.

Conductividad térmica del cobre de brea tenaz electrolítica (ETP)

La conductividad térmica del cobre de brea tenaz electrolítica (ETP) es 394 W/(mK).

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica, k (o λ), medida en  W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción. Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T). Se asocian definiciones similares con las conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

Conductividad eléctrica del cobre de brea tenaz electrolítica (ETP)

La conductividad eléctrica del cobre de brea tenaz electrolítica (ETP) es 101% IACS (alrededor de 58,6 MS/m).

La resistividad eléctrica  y su inversa,  la conductividad eléctrica, es una propiedad fundamental de un material que cuantifica la fuerza con la que resiste o conduce el flujo de corriente eléctrica. Una resistividad baja indica un material que permite fácilmente el flujo de corriente eléctrica. El símbolo de resistividad suele ser la letra griega ρ (rho). La unidad SI de resistividad eléctrica es el ohmímetro (Ω⋅m). Tenga en cuenta que la resistividad eléctrica no es lo mismo que la resistencia eléctrica. La resistencia eléctrica se expresa en ohmios. Mientras que la resistividad es una propiedad material, la resistencia es propiedad de un objeto.

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: comprender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Aleaciones de cobre

Esperamos que este artículo, Cobre de paso resistente a los electrolitos – ETP – Características y usos , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.