Facebook Instagram Youtube Twitter

Quelle est l’application des alliages de titane – Utilisations – Définition

Les applications aérospatiales, y compris l’utilisation dans les composants structurels (cellule) et les moteurs à réaction, représentent toujours la plus grande part de l’utilisation de l’alliage de titane. Application d’alliages de titane – Utilisations

Alliage de titaneLe titane est un métal de transition brillant avec une couleur argentée, une faible densité et une résistance élevée. Le titane est résistant à la corrosion dans l’eau de mer, l’eau régale et le chlore. Dans les centrales électriques, le titane peut être utilisé dans les condenseurs de surface. Le métal est extrait de ses principaux minerais par les procédés Kroll et Hunter. Le procédé de Kroll impliquait la réduction du tétrachlorure de titane (TiCl4), d’abord avec du sodium et du calcium, puis avec du magnésium, sous une atmosphère de gaz inerte. Le titane pur est plus résistant que les aciers ordinaires à faible teneur en carbone, mais 45 % plus léger. Il est également deux fois plus résistant que les alliages d’aluminium faibles, mais seulement 60 % plus lourd. Les deux propriétés les plus utiles du métal sont résistance à la corrosion et rapport résistance/densité, le plus élevé de tous les éléments métalliques. La résistance à la corrosion des alliages de titane à des températures normales est exceptionnellement élevée. La résistance à la corrosion du titane repose sur la formation d’une couche d’oxyde stable et protectrice. Bien que le titane « commercialement pur » ait des propriétés mécaniques acceptables et ait été utilisé pour les implants orthopédiques et dentaires, pour la plupart des applications, le titane est allié avec de petites quantités d’aluminium et de vanadium, généralement 6% et 4% respectivement, en poids. Ce mélange a une solubilité solide qui varie considérablement avec la température, ce qui lui permet de subir un renforcement par précipitation.

Les alliages de titane sont des métaux qui contiennent un mélange de titane et d’autres éléments chimiques. Ces alliages ont une résistance à la traction et une ténacité très élevées (même à des températures extrêmes). Ils sont légers, ont une résistance à la corrosion extraordinaire et la capacité de résister à des températures extrêmes.

Application des alliages de titane – Utilisations

Les deux propriétés les plus utiles du métal sont la résistance à la corrosion et le rapport résistance/densité, le plus élevé de tous les éléments métalliques. La résistance à la corrosion des alliages de titane à des températures normales est exceptionnellement élevée. Ces propriétés déterminent l’application du titane et de ses alliages. La première application de production de titane remonte à 1952, pour les nacelles et les pare-feu de l’avion de ligne Douglas DC-7. Une résistance spécifique élevée, une bonne résistance à la fatigue et une bonne durée de vie au fluage, ainsi qu’une bonne ténacité à la rupture sont des caractéristiques qui font du titane un métal privilégié pour les applications aérospatiales. Les applications aérospatiales, y compris l’utilisation dans les composants structurels (cellule) et les moteurs à réaction, représentent toujours la plus grande part de l’utilisation de l’alliage de titane. Sur leavion supersonique SR-71, le titane a été utilisé pour 85% de la structure. Du fait de sa très grande inertie, le titane trouve de nombreuses applications biomédicales, qui reposent sur son inertie dans le corps humain, c’est-à-dire sa résistance à la corrosion par les fluides corporels.

Titane commercialement pur – Grade 1 dans les condenseurs de vapeur

Dans les centrales nucléaires, le système de condenseur de vapeur principal (MC) est conçu pour condenser et désaérer la vapeur d’échappement de la turbine principale et fournir un dissipateur thermique pour le système de dérivation de la turbine. La vapeur évacuée des turbines BP est condensée en passant sur des tubes contenant de l’eau du système de refroidissement. Ces tubes sont généralement en acier inoxydable, en alliages de cuivre ou en titane selon plusieurs critères de sélection (tels que la conductivité thermique ou la résistance à la corrosion). Tubes de condenseur en titane sont généralement le meilleur choix technique, mais le titane est un matériau très coûteux et l’utilisation de tubes de condenseur en titane est associée à des coûts initiaux très élevés. Le titane en particulier peut apporter des améliorations majeures telles que des vitesses d’eau plus élevées favorisant de meilleurs coefficients thermiques, une excellente résistance à l’abrasion, à l’érosion et à la corrosion améliorant ainsi la résistance à l’encrassement. Les tubes sont principalement des tubes soudés de la norme ASTM SB 338 grade 1 fabriqués sur une ligne de fabrication continue. Ce titane commercialement pur est le titane le plus doux et a la ductilité la plus élevée. Il présente de bonnes caractéristiques de formage à froid et offre une excellente résistance à la corrosion. Il possède également d’excellentes propriétés de soudage et une résistance élevée aux chocs. Toutes les opérations de fabrication (soudage, recuit, contrôle non destructif) sont entièrement automatisées pour produire des tubes de haute qualité en grande quantité.

Nuances de Titane

Le titane pur et ses alliages sont généralement définis par leurs nuances définies par la norme internationale ASTM. En général, il existe près de 40 nuances de titane et de ses alliages. Vous trouverez ci-dessous un aperçu des alliages de titane et des nuances pures les plus fréquemment rencontrés, leurs propriétés, leurs avantages et leurs applications industrielles.

  • alliages de titane - compositionGrade 1. Le titane grade 1 commercialement pur est l’alliage de titane le plus ductile et le plus doux. C’est une bonne solution pour le formage à froid et les environnements corrosifs. Il possède la plus grande formabilité, une excellente résistance à la corrosion et une résistance élevée aux chocs. En raison de sa formabilité, il est couramment disponible sous forme de plaque et de tube en titane. Ceux-ci inclus:
    • Traitement chimique
    • Fabrication de chlorate
    • Architecture
    • Industrie médicale
    • Industrie maritime
    • Pièces automobiles
    • Structure de la cellule
  • Grade 2 . Le titane de grade 2 commercialement pur est très similaire au grade 1, mais il a une résistance plus élevée que le grade 1 et d’excellentes propriétés de formage à froid. Il offre d’excellentes propriétés de soudage et une excellente résistance à l’oxydation et à la corrosion. Cette qualité de titane est la qualité la plus courante de l’industrie du titane commercialement pur. C’est le premier choix pour de nombreux domaines d’applications:
    • Aérospatial,
    • Automobile,
    • Traitement chimique et fabrication de chlorate,
    • Dessalement,
    • La production d’énergie.
  • Grade 5 – Ti-6Al-4V. Le grade 5 est l’alliage le plus couramment utilisé et il s’agit d’un alliage alpha + bêta. L’alliage de grade 5 représente 50 % de l’utilisation totale de titane dans le monde. Il a une composition chimique de 6% d’aluminium, 4% de vanadium, 0,25% (maximum) de fer, 0,2% (maximum) d’oxygène et le reste de titane. Généralement, le Ti-6Al-4V est utilisé dans des applications jusqu’à 400 degrés Celsius. Il a une densité d’environ 4420 kg/m3. Il est nettement plus résistant que le titane commercialement pur (grades 1 à 4) en raison de sa possibilité d’être traité thermiquement. Cette nuance est une excellente combinaison de résistance, de résistance à la corrosion, de soudure et de fabricabilité. C’est le premier choix pour de nombreux domaines d’applications:
    • Turbines d’avion
    • Composants du moteur
    • Composants structuraux d’aéronefs
    • Attaches aérospatiales
    • Pièces automatiques performantes
    • Applications marines
  • Niveau 23 – Ti-6Al-4V-ELI. Ti-6Al-4V-ELI ou TAV-ELI est la version de pureté supérieure de Ti-6Al-4V. ELI signifie Extra Low Interstitiel. La différence essentielle entre Ti6Al4V ELI (Grade 23) et Ti6Al4V (Grade 5) est la réduction de la teneur en oxygène à 0,13 % (maximum) dans le Grade 23. La réduction des éléments interstitiels oxygène et fer améliore la ductilité et la résistance à la rupture avec une certaine réduction de la résistance. C’est le premier choix pour tout type de situation où une combinaison de haute résistance, légèreté, bonne résistance à la corrosion et haute ténacité est requise. Cette qualité de titane, qualité médicale du titane, est utilisée dans des applications biomédicales telles que les composants implantables en raison de sa biocompatibilité, de sa bonne résistance à la fatigue et de son faible module.

Références :
Science des matériaux:

Département américain de l’énergie, science des matériaux. DOE Fundamentals Handbook, Volume 1 and 2. Janvier 1993.
US Department of Energy, Material Science. DOE Fundamentals Handbook, Volume 2 et 2. Janvier 1993.
William D. Callister, David G. Rethwisch. Science et génie des matériaux : une introduction 9e édition, Wiley ; 9 édition (4 décembre 2013), ISBN-13 : 978-1118324578.
En ligneEberhart, Mark (2003). Pourquoi les choses se cassent : Comprendre le monde par la manière dont il se décompose. Harmonie. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introduction à la thermodynamique des matériaux (4e éd.). Éditions Taylor et Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Une introduction à la science des matériaux. Presse universitaire de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Matériaux: ingénierie, science, traitement et conception (1ère éd.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introduction au génie nucléaire, 3e éd., Prentice-Hall, 2001, ISBN : 0-201-82498-1.

Voir ci-dessus:
Alliages de titane  » style= »plat » background= »#ffffff » color= »#606060″ size= »5″ radius= »10″ icon= »icône : lien » icon_color= »#5d5d5d » text_shadow= »0px 0px 0px #000000″ ][/su_button]

Nous espérons que cet article, Application des alliages de titane – Utilisations, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.