Facebook Instagram Youtube Twitter

O que é Aplicação de Ligas de Titânio – Usos – Definição

Aplicações aeroespaciais, incluindo o uso em componentes estruturais (célula) e motores a jato, ainda respondem pela maior parte do uso de liga de titânio. Aplicação de Ligas de Titânio – Usos

Liga de titânioO titânio é um metal de transição brilhante com uma cor prateada, baixa densidade e alta resistência. O titânio é resistente à corrosão na água do mar, água régia e cloro. Em usinas de energia, o titânio pode ser usado em condensadores de superfície. O metal é extraído de seus principais minérios pelos processos Kroll e Hunter. O processo de Kroll envolvia a redução do tetracloreto de titânio (TiCl4), primeiro com sódio e cálcio e depois com magnésio, sob uma atmosfera de gás inerte. O titânio puro é mais forte que os aços comuns de baixo teor de carbono, mas 45% mais leve. Também é duas vezes mais forte que as ligas de alumínio fracas, mas apenas 60% mais pesadas. As duas propriedades mais úteis do metal são resistência à corrosão e relação força-densidade, a mais alta de qualquer elemento metálico. A resistência à corrosão das ligas de titânio em temperaturas normais é excepcionalmente alta. A resistência à corrosão do titânio é baseada na formação de uma camada de óxido protetora estável. Embora o titânio “comercialmente puro” tenha propriedades mecânicas aceitáveis ​​e tenha sido usado para implantes ortopédicos e dentários, para a maioria das aplicações o titânio é ligado com pequenas quantidades de alumínio e vanádio, tipicamente 6% e 4%, respectivamente, em peso. Esta mistura tem uma solubilidade sólida que varia drasticamente com a temperatura, permitindo que ela sofra um reforço de precipitação.

As ligas de titânio são metais que contêm uma mistura de titânio e outros elementos químicos. Essas ligas têm resistência à tração e tenacidade muito altas (mesmo em temperaturas extremas). Eles são leves, têm extraordinária resistência à corrosão e a capacidade de suportar temperaturas extremas.

Aplicação de Ligas de Titânio – Usos

As duas propriedades mais úteis do metal são a resistência à corrosão e a relação resistência-densidade, a mais alta de qualquer elemento metálico. A resistência à corrosão das ligas de titânio em temperaturas normais é excepcionalmente alta. Essas propriedades determinam a aplicação do titânio e suas ligas. A primeira aplicação de produção de titânio foi em 1952, para as naceles e firewalls do Douglas DC-7. Alta resistência específica, boa resistência à fadiga e vida útil à fluência e boa tenacidade à fratura são características que tornam o titânio um metal preferido para aplicações aeroespaciais. Aplicações aeroespaciais, incluindo o uso em componentes estruturais (célula) e motores a jato, ainda representam a maior parte do uso da liga de titânio. No aeronave supersônica SR-71, o titânio foi usado em 85% da estrutura. Devido à inércia muito alta, o titânio tem muitas aplicações biomédicas, que se baseiam em sua inércia no corpo humano, ou seja, resistência à corrosão por fluidos corporais.

Titânio comercialmente puro – Grau 1 em condensadores de vapor

Nas usinas nucleares, o sistema principal do condensador de vapor (MC) é projetado para condensar e desaerar o vapor de exaustão da turbina principal e fornecer um dissipador de calor para o sistema de derivação da turbina. O vapor exaurido das turbinas LP é condensado passando por tubos contendo água do sistema de resfriamento. Esses tubos geralmente são feitos de aço inoxidável, ligas de cobre ou titânio, dependendo de vários critérios de seleção (como condutividade térmica ou resistência à corrosão). Tubos condensadores de titânio são geralmente a melhor escolha técnica, porém o titânio é um material muito caro e o uso de tubos condensadores de titânio está associado a custos iniciais muito altos. O titânio, em particular, pode trazer grandes melhorias, como velocidades de água mais altas, promovendo melhores coeficientes de calor, excelente resistência à abrasão, erosão e corrosão, melhorando assim a resistência à incrustação. Os tubos são em sua maioria tubos soldados de ASTM SB 338 grau 1 feitos em uma linha de fabricação contínua. Este titânio comercialmente puro é o titânio mais macio e tem a maior ductilidade. Possui boas características de conformação a frio e excelente resistência à corrosão. Todas as operações de fabricação (soldagem, recozimento, testes não destrutivos) são totalmente automatizadas para produzir tubos de alta qualidade em grandes quantidades.

Graus de Titânio

O titânio puro e suas ligas são comumente definidos por seus graus definidos pelo padrão ASTM International. Em geral, existem quase 40 graus de titânio e suas ligas. A seguir está uma visão geral das ligas de titânio e graus puros mais freqüentemente encontrados , suas propriedades, benefícios e aplicações industriais.

  • ligas de titânio - composiçãoGrau 1. O titânio comercialmente puro grau 1 é a liga de titânio mais dúctil e mais macia. É uma boa solução para conformação a frio e ambientes corrosivos. Possui a maior conformabilidade, excelente resistência à corrosão e alta tenacidade ao impacto. Devido à sua capacidade de conformação, é comumente disponível como placa e tubo de titânio. Esses incluem:
    • processamento químico
    • fabricação de clorato
    • arquitetura
    • indústria médica
    • indústria naval
    • partes automotivas
    • estrutura da fuselagem
  • Grau 2. O titânio comercialmente puro grau 2 é muito semelhante ao grau 1, mas tem maior resistência do que o grau 1 e excelentes propriedades de conformação a frio. Ele fornece excelentes propriedades de soldagem e tem excelente resistência à oxidação e corrosão. Este grau de titânio é o grau mais comum da indústria de titânio comercialmente puro. É a escolha principal para muitos campos de aplicações:
    • Aeroespacial
    • Automotivo
    • Processamento químico e fabricação de clorato
    • Dessalinização
    • Geração de energia
  • Grau 5 – Ti-6Al-4V. Grau 5 é a liga mais comumente usada e é uma liga alfa + beta. A liga de grau 5 é responsável por 50% do uso total de titânio em todo o mundo. Tem uma composição química de 6% de alumínio, 4% de vanádio, 0,25% (máximo) de ferro, 0,2% (máximo) de oxigênio e o restante de titânio. Geralmente, o Ti-6Al-4V é usado em aplicações de até 400 graus Celsius. Tem uma densidade de aproximadamente 4420 kg/m3. É significativamente mais forte que o titânio comercialmente puro (graus 1-4) devido à possibilidade de ser tratado termicamente. Esta classe é uma excelente combinação de força, resistência à corrosão, solda e capacidade de fabricação. É a escolha principal para muitos campos de aplicações:
    • Turbinas de aeronaves
    • Componentes do motor
    • Componentes estruturais de aeronaves
    • Fechos aeroespaciais
    • Peças automáticas de alto desempenho
    • Aplicações marítimas
  • Grau 23 – Ti-6Al-4V-ELI. Ti-6Al-4V-ELI ou TAV-ELI é a versão de maior pureza do Ti-6Al-4V. ELI significa Extra Low Intersticial. A diferença essencial entre Ti6Al4V ELI (grau 23) e Ti6Al4V (grau 5) é a redução do teor de oxigênio para 0,13% (máximo) no grau 23. Os elementos intersticiais reduzidos oxigênio e ferro melhoram a ductilidade e a resistência à fratura com alguma redução na resistência. É a melhor escolha para qualquer tipo de situação em que seja necessária uma combinação de alta resistência, peso leve, boa resistência à corrosão e alta tenacidade. Este grau de titânio, grau médico de titânio, é usado em aplicações biomédicas, como componentes implantáveis, devido à sua biocompatibilidade, boa resistência à fadiga e baixo módulo.

Referências:
Ciência dos Materiais:

Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 1 e 2. Janeiro de 1993.
Departamento de Energia dos EUA, Ciência de Materiais. DOE Fundamentals Handbook, Volume 2 e 2. Janeiro de 1993.
William D. Callister, David G. Rethwisch. Ciência e Engenharia de Materiais: Uma Introdução 9ª Edição, Wiley; 9 edição (4 de dezembro de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por que as coisas quebram: entendendo o mundo pela maneira como ele se desfaz. Harmonia. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introdução à Termodinâmica dos Materiais (4ª ed.). Editora Taylor e Francis. ISBN 978-1-56032-992-3.
González-Viñas, W. & Mancini, HL (2004). Uma Introdução à Ciência dos Materiais. Princeton University Press. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiais: engenharia, ciência, processamento e design (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introdução à Engenharia Nuclear, 3ª ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Veja acima:
Ligas de titânio

Esperamos que este artigo, Aplicação de Ligas de Titânio – Usos, ajude você. Se sim, dê um like na barra lateral. O objetivo principal deste site é ajudar o público a aprender algumas informações interessantes e importantes sobre materiais e suas propriedades.