Facebook Instagram Youtube Twitter

¿Cuáles son las propiedades térmicas de las aleaciones de circonio? Definición

El punto de fusión de la aleación de circonio – Zircaloy – 4 es de alrededor de 1850°C. Las aleaciones de circonio tienen una conductividad térmica más baja (aproximadamente 18 W/mK) que el metal de circonio puro (aproximadamente 22 W/mK). Propiedades térmicas de las aleaciones de circonio
Ensamblaje de combustible nuclear
Conjunto de combustible típico

El circonio y sus aleaciones se utilizan ampliamente como revestimiento para combustibles de reactores nucleares. El circonio aleado con niobio o estaño tiene excelentes propiedades anticorrosivas. La alta resistencia a la corrosión de las aleaciones de circonio resulta de la formación natural de un óxido estable denso en la superficie del metal. Esta película es autocurativa, continúa creciendo lentamente a temperaturas de hasta aproximadamente 550°C (1020°F) y permanece firmemente adherida. La propiedad deseada de estas aleaciones es también una sección transversal de captura de neutrones baja. Las desventajas del circonio son las propiedades de baja resistencia y la baja resistencia al calor, que pueden eliminarse, por ejemplo, mediante una aleación con niobio.

  • Circonio – Aleaciones de niobio. Las aleaciones de circonio con niobio se utilizan como revestimientos de elementos combustibles de reactores VVER y RBMK. Estas aleaciones son el material base del canal de montaje del reactor RBMK. La aleación Zr + 1% Nb de tipo N-1 E-110 se utiliza para revestimientos de elementos combustibles, la aleación Zr + 2,5% Nb de tipo E-125 se aplica para tubos de canales de montaje.
  • Circonio – Aleaciones de estaño. Las aleaciones de circonio, en las que el estaño es el elemento de aleación básico, mejora sus propiedades mecánicas, tienen una amplia distribución en los EE. UU. Un subgrupo común tiene la marca comercial Zircaloy. En el caso de las aleaciones de circonio-estaño, se produce la disminución de la resistencia a la corrosión en el agua y el vapor, lo que resulta en la necesidad de una aleación adicional.

Una composición típica de las aleaciones de circonio de grado nuclear es más del 95 por ciento en peso de circonio y menos del 2% de estaño, niobio, hierro, cromo, níquel y otros metales, que se agregan para mejorar las propiedades mecánicas y la resistencia a la corrosión. La aleación más utilizada, hasta la fecha, en PWR, ha sido Zircaloy 4, sin embargo, actualmente está siendo reemplazada por nuevas aleaciones a base de circonio-niobio, que exhiben una mejor resistencia a la corrosión. La temperatura máxima a la que se pueden utilizar las aleaciones de circonio en los reactores refrigerados por agua depende de su resistencia a la corrosión. Las aleaciones de circonio más comunes, Zircaloy-2 y Zircaloy-4, contienen los fuertes estabilizadores α estaño y oxígeno, además de los estabilizadores β hierro, cromo y níquel. Aleaciones de tipo Zircalloy, en las que el estaño es el elemento de aleación básico que proporciona una mejora de sus propiedades mecánicas, tener una amplia distribución en el mundo. Sin embargo, en este caso, se produce la disminución de la resistencia a la corrosión en el agua y el vapor que dio lugar a la necesidad de una aleación adicional. La mejora provocada por el aditivo niobio probablemente implica un mecanismo diferente. La alta resistencia a la corrosión de los metales aleados con niobio en agua y vapor a temperaturas de 400 a 550°C se debe a su capacidad de pasivación con formación de películas protectoras.

Oxidación de aleaciones de circonio

La oxidación de las aleaciones de circonio es uno de los procesos más estudiados en toda la industria nuclear. La reacción oxidativa del circonio con agua libera gas hidrógeno, que se difunde parcialmente en la aleación y forma hidruros de circonio. Los hidruros son menos densos y mecánicamente más débiles que la aleación; su formación da como resultado la formación de ampollas y el agrietamiento del revestimiento, un fenómeno conocido como fragilización por hidrógeno. Si bien muchos de estos informes están escritos para abordar la reacción del combustible y el vapor con las aleaciones de circonio en el caso de un accidente nuclear, todavía hay un número sustancial de informes que tratan de la oxidación de las aleaciones de circonio a temperaturas moderadas de aproximadamente 800 K e inferiores.

Zr + 2H2O → ZrO2 + 2H2

A altas temperaturas, la reacción exotérmica de las aleaciones a base de Zr con el vapor es mucho más intensa y peligrosa para la seguridad de las centrales nucleares durante accidentes como un accidente por pérdida de refrigerante (LOCA). El principal problema de la oxidación a alta temperatura es que el revestimiento de circonio reacciona rápidamente con el vapor de agua a alta temperatura. La cinética de oxidación de las aleaciones de circonio relevantes parece ser parabólica en el rango de temperatura de 1000-1500°C para muchas aleaciones basadas en Zr.

Propiedades térmicas de la aleación de circonio – Zircaloy – 4

Las propiedades térmicas  de los materiales se refieren a la respuesta de los materiales a los cambios de  temperatura y a la aplicación de calor. A medida que un sólido absorbe energía en forma de calor, su temperatura aumenta y sus dimensiones aumentan. Pero los diferentes materiales reaccionan a la aplicación de calor de manera diferente.

La capacidad caloríficala expansión térmica y la conductividad térmica son propiedades que a menudo son críticas en el uso práctico de sólidos.

Punto de fusión de la aleación de circonio – Zircaloy – 4

El punto de fusión de la aleación de circonio – Zircaloy – 4 es de alrededor de 1850°C.

En general, la  fusión  es un  cambio  de fase de una sustancia de la fase sólida a la líquida. El  punto  de fusión de una sustancia es la temperatura a la que se produce este cambio de fase. El  punto de fusión  también define una condición en la que el sólido y el líquido pueden existir en equilibrio.

Conductividad térmica de la aleación de circonio – Zircaloy – 4

Las aleaciones de circonio tienen una conductividad térmica más baja (aproximadamente 18 W/mK) que el metal de circonio puro (aproximadamente 22 W/mK).

Las características de transferencia de calor de un material sólido se miden mediante una propiedad llamada  conductividad térmica, k (o λ), medida en  W/mK. Es una medida de la capacidad de una sustancia para transferir calor a través de un material por  conducción. Tenga en cuenta que  la ley de Fourier se  aplica a toda la materia, independientemente de su estado (sólido, líquido o gas), por lo tanto, también se define para líquidos y gases.

La  conductividad térmica  de la mayoría de los líquidos y sólidos varía con la temperatura. Para los vapores, también depende de la presión. En general:

conductividad térmica - definición

La mayoría de los materiales son casi homogéneos, por lo que normalmente podemos escribir  k = k (T). Se asocian definiciones similares con conductividades térmicas en las direcciones y y z (ky, kz), pero para un material isótropo, la conductividad térmica es independiente de la dirección de transferencia, kx = ky = kz = k.

References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. DOE Fundamentals Handbook, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Ver arriba:
Aleaciones de circonio

Esperamos que este artículo, Propiedades térmicas de las aleaciones de circonio , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.