Facebook Instagram Youtube Twitter

¿Qué es la densidad de metales ligeros y aleaciones? Definición

Densidad de metales ligeros y aleaciones. Sus densidades de 1,7 (magnesio), 2,7 (aluminio) y 4,5 g/cm3 (titanio) oscilan entre el 19 y el 56% de las densidades de los metales estructurales más antiguos, hierro (7,9 g/cm3) y cobre (8,9 g/cm3). Los metales comúnmente clasificados como metales ligeros son aquellos cuya densidad es menor que la densidad del acero (7,8 g/cm3, o 0,28 lb / in.3).

Aleación de titanioLos metales ligeros y sus aleaciones son materiales de densidad relativamente baja y relaciones de resistencia a peso elevadas. Estos metales y aleaciones son de gran importancia en aplicaciones de ingeniería para uso en transporte terrestre, marítimo, aéreo y espacial. El magnesio, el aluminio y el titanio son metales ligeros de gran importancia comercial. Estos tres metales y sus aleaciones comprenden la mayor parte de los materiales metálicos de alta relación resistencia / peso utilizados en los sistemas industriales. El aluminio es el más versátil de estos materiales y el titanio es el más resistente a la corrosión con una resistencia muy alta, mientras que el magnesio tiene la densidad más baja. Sus densidades de 1,7 (magnesio), 2,7 (aluminio) y 4,5 g/cm3 (titanio) oscilan entre el 19 y el 56% de las densidades de los metales estructurales más antiguos, hierro (7,9 g/cm3) y cobre (8,9 g/cm3). Los metales comúnmente clasificados como metales ligeros son aquellos cuya densidad es menor que la densidad del acero (7,8 g/cm3, o 0,28 lb/in.3).

Dado que estos metales puros suelen ser materiales más blandos con resistencia insuficiente, deben alearse para alcanzar las propiedades mecánicas objetivo. Por ejemplo, el aluminio de alta pureza es un material blando con una resistencia máxima de aproximadamente 10 MPa, lo que limita su usabilidad en aplicaciones industriales. Por otro lado, la resistencia a la tracción de la aleación de aluminio 6061 puede alcanzar más de 290 MPa dependiendo del temple del material. Por lo tanto, estamos discutiendo principalmente las aleaciones en lugar de los metales puros.

Densidad de aleaciones y metales ligeros

La densidad de una aleación de aluminio típica es de 2,7 g/cm3 (aleación 6061).

La densidad de una aleación de magnesio típica es de 1,8 g/cm3 (Elektron 21).

La densidad de una aleación de titanio típica es de 4,43 g/cm3 (Ti-6Al-4V).

La densidad  se define como la  masa por unidad de volumen. Es una  propiedad intensiva , que se define matemáticamente como masa dividida por volumen:

ρ = m / V

En palabras, la densidad (ρ) de una sustancia es la masa total (m) de esa sustancia dividida por el volumen total (V) ocupado por esa sustancia. La unidad estándar del SI es  kilogramos por metro cúbico  (kg/m3). La unidad de inglés estándar es  libras de masa por pie cúbico  (lbm/ft3).

Dado que la densidad (ρ) de una sustancia es la masa total (m) de esa sustancia dividida por el volumen total (V) ocupado por esa sustancia, es obvio que la densidad de una sustancia depende en gran medida de su masa atómica y también de  la densidad del número atómico  (N; átomos/cm3),

  • Peso atómico. La masa atómica es transportada por el núcleo atómico, que ocupa sólo alrededor de 10-12  del volumen total del átomo o menos, pero contiene toda la carga positiva y al menos el 99,95% de la masa total del átomo. Por lo tanto, está determinado por el número de masa (número de protones y neutrones).
  • Densidad del número atómico. La  densidad del número atómico  (N; átomos/cm3), que está asociada con los radios atómicos, es el número de átomos de un tipo dado por unidad de volumen (V; cm3) del material. La densidad del número atómico (N; átomos/cm3) de un material puro que tiene  un peso atómico o molecular  (M; gramos/mol) y la densidad del  material  (⍴; gramos/cm3) se calcula fácilmente a partir de la siguiente ecuación utilizando el número de Avogadro (NA = 6,022×1023  átomos o moléculas por mol):Densidad del número atómico
  • Estructura cristalina. La densidad de la sustancia cristalina se ve afectada significativamente por su estructura cristalina. La estructura de FCC, junto con su relativo hexagonal (hcp), tiene el factor de empaque más eficiente (74%). Los metales que contienen estructuras de FCC incluyen austenita, aluminio, cobre, plomo, plata, oro, níquel, platino y torio.
References:
Ciencia de los materiales:

Departamento de Energía de EE. UU., Ciencia de Materiales. Manual de Fundamentos del DOE, Volumen 1 y 2. Enero de 1993.
Departamento de Energía de EE . UU., Ciencia de Materiales. Manual de fundamentos del DOE, Volumen 2 y 2. Enero de 1993.
William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578.
Eberhart, Mark (2003). Por qué se rompen las cosas: entender el mundo a través de la forma en que se desmorona. Armonía. ISBN 978-1-4000-4760-4.
Gaskell, David R. (1995). Introducción a la Termodinámica de Materiales (4ª ed.). Taylor y Francis Publishing. ISBN 978-1-56032-992-3.
González-Viñas, W. y Mancini, HL (2004). Introducción a la ciencia de los materiales. Prensa de la Universidad de Princeton. ISBN 978-0-691-07097-1.
Ashby, Michael; Hugh Shercliff; David Cebon (2007). Materiales: ingeniería, ciencia, procesamiento y diseño (1ª ed.). Butterworth-Heinemann. ISBN 978-0-7506-8391-3.
JR Lamarsh, AJ Baratta, Introducción a la ingeniería nuclear, 3d ed., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Vea arriba:
Aleaciones ligeras

Esperamos que este artículo, Densidad de metales ligeros y aleaciones , le ayude. Si es así, danos un me gusta en la barra lateral. El objetivo principal de este sitio web es ayudar al público a conocer información importante e interesante sobre los materiales y sus propiedades.