Facebook Instagram Youtube Twitter

Laine de verre – Densité – Capacité calorifique – Conductivité thermique

À propos de la laine de verre

La laine de verre (également connue à l’origine sous le nom de fibre de verre) est un matériau isolant fabriqué à partir de fibres de verre disposées à l’aide d’un liant dans une texture similaire à la laine. La laine de verre et la laine de roche sont produites à partir de fibres minérales et sont donc souvent appelées « laines minérales ». La laine minérale est un nom général pour les matériaux fibreux formés par filage ou étirage de minéraux en fusion. La laine de verre est un produit de four de verre fondu à une température d’environ 1450 °C. 

laine de verre propriétés densité résistance prix

Résumé

Nom Laine de verre
Phase à STP solide
Densité 20kg/m3
Résistance à la traction ultime 0,02 MPa
Limite d’élasticité N / A
Module de Young N / A
Dureté Brinell N / A
Point de fusion 1227°C
Conductibilité thermique 0,03 W/mK
Capacité thermique 840 J/g·K
Prix 3 $/kg

Densité de la laine de verre

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité  est définie comme la  masse par unité de volume. C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume: ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).

La densité de la laine de verre est de 20 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en laine de verre, qui pèse une tonne métrique.

Solution:

La densité  est définie comme la masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 3,684 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques de la laine de verre

Résistance de la laine de verre

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.

La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la  loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.

Voir aussi : Résistance des matériaux

Résistance à la traction ultime de la laine de verre

La résistance à la traction ultime de la laine de verre est de 0,02 MPa.

Limite d’élasticité de la laine de verre

La limite d’élasticité de la laine de verre est N/A.

Module de Young de la laine de verre

Le module de Young de la laine de verre est N/A.

Dureté de la laine de verre

En science des matériaux, la  dureté  est la capacité à résister à  l’indentation de surface  ( déformation plastique localisée ) et  aux rayuresLe test de dureté Brinell  est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un  pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

L’  indice de dureté Brinell  (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation :

indice de dureté Brinell - définition

La dureté Brinell de la laine de verre est d’environ N/A.

Voir aussi : Dureté des matériaux

Exemple: Force

Supposons une tige en plastique faite de laine de verre. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 0,02 MPa.

Solution:

La contrainte (σ)  peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 0,02 x 106 x 0,0001 = 2 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques de la laine de verre

Laine de verre – Point de fusion

Le point de fusion de la laine de verre est de 1227 °C.

Notez que ces points sont associés à la pression atmosphérique standard. En général, la  fusion  est un  changement de phase  d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le  point de fusion  définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.

Laine de verre – Conductibilité thermique

La conductibilité thermique de la laine de verre est de 0,03 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la  conductibilité thermique, k (ou λ), mesurée en  W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. Notez que  la loi de Fourier  s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

La conductibilité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T) . Des définitions similaires sont associées aux conductibilités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductibilité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Laine de verre – Chaleur spécifique

La chaleur spécifique de la laine de verre est de 840  J/g K.

La chaleur spécifique, ou capacité thermique spécifique, est une propriété liée à l’énergie interne  très importante en thermodynamique. Les  propriétés intensives cv et cp sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’ énergie interne u(T, v) et de  l’ enthalpie h(T, p), respectivement: 

où les indices v et p désignent les variables maintenues fixes lors de la différenciation. Les propriétés cv et cp sont appelées chaleurs spécifiques (ou capacités calorifiques) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont  J/kg K  ou  J/mol K.

Exemple: Calcul du transfert de chaleur

Laine de verre - Conductivité thermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une surface carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de  flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). Le mur a une épaisseur de 15 cm (L1) et il est fait de laine de verre avec une conductivité thermique  de k1 = 0,03 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de  conduction  et  de convection. Avec ces systèmes composites, il est souvent pratique de travailler avec un  coefficient de transfert de chaleur global , appelé  facteur  U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le  coefficient de transfert de chaleur global  est lié à la  résistance thermique totale  et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le  coefficient de transfert de chaleur global  peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global  est alors: U = 1 / (1/10 + 0,15/0,03 + 1/30) = 0,19 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 0,19 [W/m2K] x 30 [K] = 5,84 W/m2

La perte totale de chaleur à travers ce mur sera de: qperte = q . A = 5,84 [W/m2] x 30 [m2] = 175,32 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique

Aérogel – Densité – Capacité thermique – Conductivité thermique

À propos de l’aérogel

L’aérogel est un matériau solide ultraléger poreux synthétique dérivé d’un gel, dans lequel le composant liquide du gel a été remplacé par un gaz (au cours d’un processus de séchage supercritique). Les aérogels peuvent être fabriqués à partir d’une variété de composés chimiques, mais le matériau de base de l’aérogel est généralement le silicium. 

propriétés de l'aérogel densité résistance prix

Résumé

Nom Aérogel
Phase à STP solide
Densité 10kg/m3
Résistance à la traction ultime 0,08 MPa
Limite d’élasticité N / A
Module de Young 0,005 GPa
Dureté Brinell N / A
Point de fusion 1197°C
Conductibilité thermique 0,01 W/mK
Capacité thermique 1900 J/g·K
Prix 12 $/kg

Densité d’aérogel

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité est définie comme la  masse par unité de volume. C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume: ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).

La densité de l’aérogel est de 10 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en aérogel, qui pèse une tonne métrique.

Solution:

La densité est définie comme la  masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 4,642 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques de l’aérogel

Force de l’aérogel

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.

La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la  loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.

Voir aussi : Résistance des matériaux

Résistance à la traction ultime de l’aérogel

La résistance à la traction ultime de l’aérogel est de 0,08 MPa.

Limite d’élasticité de l’aérogel

La limite d’élasticité de l’aérogel est N/A.

Module de Young de l’aérogel

Le module de Young de l’aérogel est de 0,005 GPa.

Dureté de l’aérogel

En science des matériaux, la  dureté  est la capacité à résister à  l’indentation de surface (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un  pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

L’  indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation:

indice de dureté Brinell - définition

La dureté Brinell de l’aérogel est d’environ N/A.

Voir aussi : Dureté des matériaux

Exemple: Force

Supposons une tige en plastique, qui est faite d’aérogel. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 0,08 MPa.

Solution:

La contrainte (σ)  peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 0,08 x 106 x 0,0001 = 0,08 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques de l’aérogel

Aérogel – Point de fusion

Le point de fusion de l’aérogel est de 1197 °C.

Notez que ces points sont associés à la pression atmosphérique standard. En général, la  fusion  est un  changement de phase  d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le  point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.

Aérogel – Conductibilité thermique

La conductibilité thermique de l’aérogel est de 0,01 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductibilité thermique, k (ou λ), mesurée en  W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. Notez que  la loi de Fourier  s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

La  conductibilité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T). Des définitions similaires sont associées aux conductibilités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductibilité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Aérogel – Chaleur spécifique

La chaleur spécifique de l’aérogel est de 1900  J/g K .

La chaleur spécifique, ou capacité thermique spécifique, est une propriété liée à l’énergie interne  très importante en thermodynamique. Les  propriétés intensives cv et cp sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’  énergie interne  u(T, v)  et de  l’ enthalpie h(T, p), respectivement: 

où les indices v et p désignent les variables maintenues fixes lors de la différenciation. Les propriétés cv et cp sont appelées chaleurs spécifiques (ou capacités calorifiques) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont  J/kg K  ou  J/mol K.

Exemple: Calcul du transfert de chaleur

Aérogel - Conductivité thermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une surface carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de  flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). Le mur a une épaisseur de 15 cm (L1) et il est fait d’aérogel avec une conductivité thermique  de k1 = 0,01 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 =30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur ) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de  conduction  et  de convection. Avec ces systèmes composites, il est souvent pratique de travailler avec un  coefficient de transfert de chaleur globalappelé  facteur U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le  coefficient de transfert de chaleur global  est lié à la  résistance thermique totale  et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le  coefficient de transfert de chaleur global  peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global  est alors: U = 1 / (1/10 + 0,15/0,01 + 1/30) = 0,066 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 0,066 [W/m2K] x 30 [K] = 1,98 W/m2

La perte totale de chaleur à travers ce mur sera de: qperte = q . A = 1,98 [W/m2] x 30 [m2] = 59,47 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique

Alliage Zirconium-Étain – Densité – Résistance – Dureté – Point de fusion

À propos de l’alliage zirconium-étain

Les alliages de zirconium, dans lesquels l’étain est l’élément d’alliage de base, permet d’améliorer leurs propriétés mécaniques, ont une large diffusion aux États-Unis. Un sous-groupe commun porte la marque Zircaloy. Dans le cas des alliages zirconium-étain, la diminution de la résistance à la corrosion dans l’eau et la vapeur se produit, ce qui entraîne la nécessité d’un alliage supplémentaire.

Les alliages de zirconium avec du niobium sont utilisés comme gaines des éléments combustibles des réacteurs VVER et RBMK. Ces alliages sont le matériau de base du canal d’assemblage du réacteur RBMK. L’alliage Zr + 1% Nb de type N-1 E-110 est utilisé pour les gainages des éléments combustibles, l’alliage Zr + 2,5% Nb de type E-125 est appliqué pour les tubes des canaux d’assemblage.

propriétés de l'alliage d'étain et de zirconium densité résistance prix

Résumé

Nom Alliage zirconium-étain
Phase à STP solide
Densité 6560kg/m3
Résistance à la traction ultime 514 MPa
Limite d’élasticité 381 MPa
Module de Young 99 GPa
Dureté Brinell 89 BHN
Point de fusion 1850°C
Conductibilité thermique 18W/mK
Capacité thermique 285 J/g·K
Prix 25 $/kg

Densité de l’alliage zirconium-étain

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité  est définie comme la  masse par unité de volume. C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume: ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse en livres par pied cube (lbm/ft3).

La densité de l’alliage zirconium-étain est de 6560 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en alliage de zirconium et d’étain, qui pèse une tonne métrique.

Solution:

La densité est définie comme la  masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 0,534 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques de l’alliage zirconium-étain

Résistance de l’alliage zirconium-étain

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime de l’alliage zirconium-étain  est d’environ 514 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximalequi peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon,température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Limite d’élasticité

Limite d’élasticité de l’alliage zirconium-étain  est d’environ 381 MPa.

La  limite d’ élasticité  est le point sur une  courbe contrainte-déformation  qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young de l’ alliage zirconium-étain  est d’environ 99 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Dureté de l’alliage zirconium-étain

La dureté Rockwell de l’alliage zirconium-étain est d’environ 89 HRB.

Numéro de dureté Brinell

Le test de dureté Rockwell  est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le  nombre de dureté Rockwell. C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté  HRA, HRB, HRC, etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale ( cône diamant 120° ) et une charge majeure de 150kg.

Exemple: Force

Supposons une tige en plastique, qui est faite d’alliage de zirconium-étain. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 514 MPa.

Solution:

La contrainte (σ)  peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 514 x 106 x 0,0001 = 51 400 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques de l’alliage zirconium-étain

Les propriétés thermiques  des matériaux font référence à la réponse des matériaux aux changements de  température et à l’application de chaleur. Lorsqu’un solide absorbe de l’énergie sous forme de chaleur, sa température augmente et ses dimensions augmentent. Mais différents matériaux réagissent différemment à l’application de chaleur.

Capacité calorifique, dilatation thermique et conductivité thermique sont des propriétés souvent critiques dans l’utilisation pratique des solides.

Point de fusion de l’alliage zirconium-étain

Point de fusion de l’alliage zirconium-étain  est d’environ 1850°C.

En général, la  fusion  est un  changement de phase  d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le  point de fusion  définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre.

Conductibilité thermique de l’alliage zirconium-étain

Les alliages de zirconium ont une conductibilité thermique plus faible (environ 18 W/mK) que le zirconium pur (environ 22 W/mK).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la  conductibilité thermique, k (ou λ), mesurée en  W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. A noter que  la loi de Fourier  s’applique à toute matière, quel que soit son état (solide, liquide ou gaz), par conséquent, elle est également définie pour les liquides et les gaz.

La  conductibilité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T). Des définitions similaires sont associées aux conductibilités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductibilité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Exemple: Calcul du transfert de chaleur

Alliage zirconium-étain - Conductivité thermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une zone carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de  flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). La paroi a une épaisseur de 15 cm (L1) et est constituée d’un alliage zirconium-étain avec une conductivité thermique  de k1 = 18 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h 2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de  conduction  et  de convection . Avec ces systèmes composites, il est souvent pratique de travailler avec un  coefficient de transfert de chaleur globalappelé  facteur  U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le  coefficient de transfert de chaleur global  est lié à la  résistance thermique totale  et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le  coefficient de transfert de chaleur global  peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global  est alors: U = 1 / (1/10 + 0,15/18 + 1/30) = 7,06 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 7,06 [W/m2K] x 30 [K] = 211,77 W/m2

La perte totale de chaleur à travers ce mur sera de: qperte = q . A = 211,77 [W/m2] x 30 [m2] = 6352,94 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique

Alliage Zirconium-Niobium – Densité – Résistance – Dureté – Point de fusion

À propos de l’alliage zirconium-niobium

Les alliages de zirconium avec du niobium sont utilisés comme gaines des éléments combustibles des réacteurs VVER et RBMK. Ces alliages sont le matériau de base du canal d’assemblage du réacteur RBMK. L’alliage Zr + 1% Nb de type N-1 E-110 est utilisé pour les gainages des éléments combustibles, l’alliage Zr + 2,5% Nb de type E-125 est appliqué pour les tubes des canaux d’assemblage.

Le matériau de gaine pour les nouvelles conceptions de combustible 17×17 est également basé sur les alliages zirconium-niobium (par exemple, le matériau ZIRLO optimisé), dont la résistance à la corrosion a été démontrée par rapport aux matériaux de gaine de combustible antérieurs. Le niveau d’étain optimisé offre un taux de corrosion réduit tout en conservant les avantages de la résistance mécanique et de la résistance à la corrosion accélérée due à des conditions chimiques anormales.

alliage zirconium niobium propriétés densité résistance prix

Résumé

Nom Alliage zirconium-niobium
Phase à STP solide
Densité 6560kg/m3
Résistance à la traction ultime 514 MPa
Limite d’élasticité 381 MPa
Module de Young 99 GPa
Dureté Brinell 89 BHN
Point de fusion 1850°C
Conductibilité thermique 18W/mK
Capacité thermique 285 J/g·K
Prix 25 $/kg

Densité de l’alliage zirconium-niobium

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité  est définie comme la  masse par unité de volume. C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume: ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).

La densité de l’alliage zirconium-niobium est de 6560 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en alliage de zirconium-niobium, qui pèse une tonne métrique.

Solution:

La densité  est définie comme la  masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 0,534 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques de l’alliage zirconium-niobium

Résistance de l’alliage zirconium-niobium

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime de l’alliage zirconium-niobium est d’environ 514 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximalequi peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon,température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Limite d’élasticité

La limite d’élasticité de l’alliage zirconium-niobium est d’environ 381 MPa.

La  limite d’ élasticité  est le point sur une  courbe contrainte-déformation  qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young de l’ alliage zirconium-niobium est d’environ 99 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke , la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Dureté de l’alliage zirconium-niobium

La dureté Rockwell de l’alliage zirconium-niobium est d’environ 89 HRB.

Numéro de dureté Brinell

Le test de dureté Rockwell  est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le  nombre de dureté Rockwell . C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à  afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté  HRA, HRB, HRC, etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale ( cône diamant 120°) et une charge majeure de 150kg.

Exemple: Force

Supposons une tige en plastique, qui est faite d’alliage de zirconium-niobium. Cette tige en plastique a une section transversale de 1 cm 2 . Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit : UTS = 514 MPa.

Solution:

La contrainte (σ) peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit :

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est :

F = UTS x A = 514 x 106 x 0,0001 = 51 400 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques de l’alliage zirconium-niobium

Les propriétés thermiques  des matériaux font référence à la réponse des matériaux aux changements de leur  température et à l’application de chaleur . Lorsqu’un solide absorbe de l’énergie sous forme de chaleur, sa température augmente et ses dimensions augmentent. Mais différents matériaux réagissent différemment à l’application de chaleur.

La capacité calorifiquela dilatation thermique et la conductivité thermique sont des propriétés qui sont souvent critiques dans l’utilisation pratique des solides.

Point de fusion de l’alliage zirconium-niobium

Le point de fusion de l’alliage zirconium-niobium est d’environ 1850°C.

En général, la  fusion  est un  changement de phase  d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le  point de fusion  définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre.

Conductibilité thermique de l’alliage zirconium-niobium

Les alliages de zirconium ont une conductibilité thermique plus faible (environ 18 W/mK) que le zirconium pur (environ 22 W/mK).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductibilité thermique, k (ou λ), mesurée en  W/mK . C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. Notez que  la loi de Fourier  s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

La conductibilité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Exemple: Calcul du transfert de chaleur

Alliage zirconium-niobium - Conductivité thermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une surface carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de  flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). La paroi a une épaisseur de 15 cm (L1) et est constituée d’un alliage de zirconium-niobium avec une conductivité thermique  de k1 = 18 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de  conduction  et  de convection . Avec ces systèmes composites, il est souvent pratique de travailler avec un  coefficient de transfert de chaleur globalappelé  facteur  U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le  coefficient de transfert de chaleur global  est lié à la  résistance thermique totale  et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le  coefficient de transfert de chaleur global  peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global  est alors: U = 1 / (1/10 + 0,15/18 + 1/30) = 7,06 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 7,06 [W/m2K] x 30 [K] = 211,77 W/m2

La perte totale de chaleur à travers ce mur sera de: qperte = q . A = 211,77 [W/m2] x 30 [m2] = 6352,94 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique

Alliage Tungstène-Rhénium – Densité – Résistance – Dureté – Point de fusion

À propos de l’alliage de tungstène-rhénium

Le tungstène et le rhénium sont tous deux des métaux réfractaires. Ces métaux sont bien connus pour leur extraordinaire résistance à la chaleur et à l’usure. La condition essentielle pour résister aux températures élevées est un point de fusion élevé et des propriétés mécaniques stables (par exemple une dureté élevée) même à des températures élevées. Ces métaux sont généralement combinés ensemble pour obtenir la fabricabilité, les propriétés thermiques et mécaniques souhaitées. Les méthodes de métallurgie des poudres peuvent être utilisées pour consolider les alliages de tungstène-rhénium. Jusqu’à 22% de rhénium est allié au tungstène pour améliorer sa résistance à haute température et sa résistance à la corrosion. La dureté de l’alliage W – 30Re brut de coulée est d’environ 500 BHN. Cette dureté dépend fortement de la teneur en rhénium. 

alliage tungstène rhénium propriétés densité résistance prix

Densité de l’alliage de tungstène-rhénium

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité  est définie comme la  masse par unité de volume. C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume: ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).

La densité de l’alliage de tungstène-rhénium est de 19700 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en alliage de tungstène-rhénium, qui pèse une tonne métrique.

Solution:

La densité  est définie comme la  masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 0,37 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques de l’alliage de tungstène-rhénium

Résistance de l’alliage de tungstène-rhénium

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.

La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la  loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module d’élasticité de Youngest le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.

Voir aussi : Résistance des matériaux

Résistance à la traction ultime de l’alliage de tungstène-rhénium

La résistance à la traction ultime de l’alliage de tungstène-rhénium est de 2100 MPa.

Limite d’élasticité de l’alliage de tungstène-rhénium

La limite d’élasticité de l’alliage de tungstène-rhénium  est N/A.

Module de Young de l’alliage de tungstène-rhénium

Le module de Young de l’alliage de tungstène-rhénium est de 400 GPa.

Dureté de l’alliage de tungstène-rhénium

En science des matériaux, la  dureté  est la capacité à résister à  l’indentation de surface (déformation plastique localisée) et aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

L’  indice de dureté Brinell  (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation:

indice de dureté Brinell - définition

La dureté Brinell de l’alliage de tungstène-rhénium est d’environ 500 BHN (converti).

Voir aussi: Dureté des matériaux

Exemple: Force

Supposons une tige en plastique, qui est faite d’alliage de tungstène-rhénium. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 2100 MPa.

Solution:

La contrainte (σ)  peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 2100 x 106 x 0,0001 = 210 000 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques de l’alliage de tungstène-rhénium

Alliage de tungstène-rhénium – Point de fusion

Le point de fusion de l’alliage de tungstène-rhénium est de 3027°C.

Notez que ces points sont associés à la pression atmosphérique standard. En général, la  fusion est un changement de phase  d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le  point de fusion  définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.

Alliage de tungstène-rhénium – Conductibilité thermique

La conductibilité thermique de l’alliage de tungstène-rhénium est de 70 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductibilité thermique, k (ou λ), mesurée en  W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. Notez que  la loi de Fourier  s’applique à toute matière, quel que soit son état (solide, liquide ou gaz), par conséquent, elle est également définie pour les liquides et les gaz.

La  conductibilité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Alliage de tungstène-rhénium – Chaleur spécifique

La chaleur spécifique de l’alliage de tungstène-rhénium est de 140 J/g K.

La chaleur spécifique, ou capacité thermique spécifique, est une propriété liée à l’énergie interne  très importante en thermodynamique. Les  propriétés intensives cv et cp sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’  énergie interne  u(T, v)  et de  l’ enthalpie  h(T, p), respectivement: 

où les indices  v et  p désignent les variables maintenues fixes lors de la différenciation. Les propriétés cv et cp sont appelées  chaleurs spécifiques  (ou capacités calorifiques) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont  J/kg K  ou  J/mol K .

Exemple: Calcul du transfert de chaleur

Alliage de tungstène-rhénium - Conductivité thermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une zone carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de  flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). La paroi a une épaisseur de 15 cm (L1) et est en alliage de tungstène-rhénium avec une conductivité thermique  de k 1 = 70 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur ) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de  conduction  et  de convection . Avec ces systèmes composites, il est souvent pratique de travailler avec un  coefficient de transfert de chaleur globalappelé  facteur U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le  coefficient de transfert de chaleur global  est lié à la  résistance thermique totale  et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le  coefficient de transfert de chaleur global  peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global  est alors : U = 1 / (1/10 + 0,15/70 + 1/30) = 7,38 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 7,38 [W/m2K] x 30 [K] = 221,44 W/m2

La perte totale de chaleur à travers ce mur sera de : qperte = q . A = 221,44 [W/m2] x 30 [m2] = 6643,23 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique

Tungstène – Densité – Résistance – Dureté – Point de fusion

À propos du Tungstène pur

Le tungstène est un métal rare présent naturellement sur Terre presque exclusivement dans des composés chimiques. Le tungstène est un matériau intrinsèquement cassant et dur, ce qui le rend difficile à travailler. 

tungstène pur propriétés densité résistance prix

Résumé

Nom Tungstène pur
Phase à STP solide
Densité 19250kg/m3
Résistance à la traction ultime 980 MPa
Limite d’élasticité 750 MPa
Module de Young 750 GPa
Dureté Brinell 3695 BHN
Point de fusion 1687 °C
Conductibilité thermique 170W/mK
Capacité thermique 130 J/g·K
Prix 110 $/kg

Densité du Tungstène pur

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité  est définie comme la  masse par unité de volume. C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume: ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est  le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est  la masse de livres par pied cube (lbm/ft3).

La densité du tungstène pur est de 19250 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en tungstène pur, qui pèse une tonne métrique.

Solution:

La densité est définie comme la  masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 0,373 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques du Tungstène pur

Force du Tungstène pur

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.

La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la  loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime du Tungstène pur

La résistance à la traction ultime du Tungstène pur est de 980 MPa.

Limite d’élasticité du Tungstène pur

La limite d’élasticité du Tungstène pur  est de 750 MPa.

Module de Young du Tungstène pur

Le module de Young du Tungstène pur est de 750 GPa.

Dureté du Tungstène pur

En science des matériaux, la dureté  est la capacité à résister à  l’indentation de surface  ( déformation plastique localisée ) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un  pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

L’  indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation:

indice de dureté Brinell - définition

La dureté Brinell du tungstène pur est d’environ 2570 BHN (converti).

Voir aussi: Dureté des matériaux

Exemple: Force

Supposons une tige en plastique faite de tungstène pur. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 980 MPa.

Solution:

La contrainte (σ)  peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 980 x 106 x 0,0001 = 98 000 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques du Tungstène pur

Tungstène pur – Point de fusion

Le point de fusion du Tungstène pur est de 3695 °C.

Notez que ces points sont associés à la pression atmosphérique standard. En général, la  fusion  est un  changement de phase  d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le  point de fusion  définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.

Tungstène pur – Conductibilité thermique

La conductibilité thermique du tungstène pur est de 170 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductibilité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. Notez que  la loi de Fourier  s’applique à toute matière, quel que soit son état (solide, liquide ou gaz), par conséquent, elle est également définie pour les liquides et les gaz.

La  conductibilité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Tungstène pur – Chaleur spécifique

La chaleur spécifique du Tungstène pur est de 130  J/g K.

La chaleur spécifique, ou capacité thermique spécifique, est une propriété liée à l’énergie interne  très importante en thermodynamique. Les  propriétés intensives cv et cp sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’ énergie interne u(T, v) et de l’ enthalpie h(T, p), respectivement: 

où les indices v et p désignent les variables maintenues fixes lors de la différenciation. Les propriétés cv et  cp sont appelées chaleurs spécifiques  (ou capacités calorifiques ) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont  J/kg K ou J/mol K.

Exemple: Calcul du transfert de chaleur

Tungstène pur - Conductivité thermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une zone carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de  flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). Le mur a une épaisseur de 15 cm (L1) et est composé de tungstène pur avec une conductivité thermique  de k1 = 170 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de  conduction  et  de convection. Avec ces systèmes composites, il est souvent pratique de travailler avec un  coefficient de transfert de chaleur globalappelé facteur  U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le  coefficient de transfert de chaleur global  est lié à la  résistance thermique totale et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le  coefficient de transfert de chaleur global peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global  est alors: U = 1 / (1/10 + 0,15/170 + 1/30) = 7,45 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 7,45 [W/m2K] x 30 [K] = 223,52 W/m2

La perte totale de chaleur à travers ce mur sera de: perte  = q . A = 223,52 [W/m2] x 30 [m2] = 6705,63 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique

Bronze d’aluminium – Densité – Résistance – Dureté – Point de fusion

À propos du Bronze d’aluminium

Les bronzes d’aluminium sont une famille d’alliages à base de cuivre offrant une combinaison de propriétés mécaniques et chimiques inégalées par toute autre série d’alliages. Ils contiennent environ 5 à 12% d’aluminium. De plus, les bronzes d’aluminium contiennent également du nickel, du silicium, du manganèse et du fer. Ils ont une excellente résistance, similaire à celle des aciers faiblement alliés, et une excellente résistance à la corrosion, en particulier dans l’eau de mer et les environnements similaires, où les alliages surpassent souvent de nombreux aciers inoxydables. Leur excellente résistance à la corrosion résulte de l’aluminium dans les alliages, qui réagit avec l’oxygène atmosphérique pour former une couche superficielle mince et dure d’alumine (oxyde d’aluminium) qui agit comme une barrière à la corrosion de l’alliage riche en cuivre. On les trouve sous forme forgée et moulée. Les bronzes d’aluminium sont généralement de couleur dorée.

aluminium bronze propriétés densité résistance prix

Résumé

Nom Aluminium Bronze
Phase à STP solide
Densité 7640kg/m3
Résistance à la traction ultime 550 MPa
Limite d’élasticité 250 MPa
Module de Young 110 GPa
Dureté Brinell 170 BHN
Point de fusion 1030°C
Conductibilité thermique 59W/mK
Capacité thermique 380 J/g·K
Prix 9 $/kg

Densité du Bronze d’aluminium

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité  est définie comme la  masse par unité de volume . C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume:  ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).

La densité du bronze d’aluminium est de 7640 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en bronze d’aluminium, qui pèse une tonne métrique.

Solution:

La densité  est définie comme la  masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 0,508 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques du Bronze d’aluminium

Les matériaux sont fréquemment choisis pour diverses applications car ils présentent des combinaisons souhaitables de caractéristiques mécaniques. Pour les applications structurelles, les propriétés des matériaux sont cruciales et les ingénieurs doivent en tenir compte.

Résistance du Bronze d’aluminium

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.

Résistance à la traction ultime

La résistance à la traction ultime du bronze d’aluminium – UNS C95400 est d’environ 550 MPa.

Limite d'élasticité - Résistance à la traction ultime - Tableau des matériauxLa résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximalequi peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon,température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.

Limite d’élasticité

La limite d’élasticité du bronze d’aluminium – UNS C95400 est d’environ 250 MPa.

La limite d’ élasticité est le point sur une courbe contrainte-déformation qui indique la limite du comportement élastique et le début du comportement plastique. Limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. Avant la limite d’élasticité, le matériau se déforme élastiquement et reprend sa forme d’origine lorsque la contrainte appliquée est supprimée. Une fois la limite d’élasticité dépassée, une partie de la déformation sera permanente et irréversible. Certains aciers et autres matériaux présentent un comportement appelé phénomène de limite d’élasticité. Les limites d’élasticité varient de 35 MPa pour un aluminium à faible résistance à plus de 1400 MPa pour les aciers à très haute résistance.

Module de Young

Le module de Young du bronze d’aluminium – UNS C95400 est d’environ 110 GPa.

Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.

Dureté du Bronze d’aluminium

La dureté Brinell du bronze d’aluminium – UNS C95400 est d’environ 170 MPa. La dureté des bronzes d’aluminium augmente avec la teneur en aluminium (et autres alliages) ainsi qu’avec les contraintes causées par le travail à froid.

Numéro de dureté Brinell

Le test de dureté Rockwell  est l’un des tests de dureté par indentation les plus courants, qui a été développé pour les tests de dureté. Contrairement au test Brinell, le testeur Rockwell mesure la profondeur de pénétration d’un pénétrateur sous une charge importante (charge majeure) par rapport à la pénétration faite par une précharge (charge mineure). La charge mineure établit la position zéro. La charge majeure est appliquée, puis retirée tout en maintenant la charge mineure. La différence entre la profondeur de pénétration avant et après l’application de la charge principale est utilisée pour calculer le  nombre de dureté Rockwell. C’est-à-dire que la profondeur de pénétration et la dureté sont inversement proportionnelles. Le principal avantage de la dureté Rockwell est sa capacité à  afficher directement les valeurs de dureté. Le résultat est un nombre sans dimension noté  HRA, HRB, HRC, etc., où la dernière lettre est l’échelle Rockwell respective.

Le test Rockwell C est réalisé avec un pénétrateur Brale (cône diamant 120°) et une charge majeure de 150kg.

Exemple: Force

Supposons une tige en plastique, qui est faite de bronze d’aluminium. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 550 MPa.

Solution:

La contrainte (σ)  peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 550 x 106 x 0,0001 = 55 000 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques du Bronze d’aluminium

Les propriétés thermiques  des matériaux font référence à la réponse des matériaux aux changements de  température et à l’application de chaleur. Lorsqu’un solide absorbe de l’énergie sous forme de chaleur, sa température augmente et ses dimensions augmentent. Mais différents matériaux réagissent différemment à l’application de chaleur.

La capacité calorifiquela dilatation thermique et la conductivité thermique sont des propriétés souvent critiques dans l’utilisation pratique des solides.

Point de fusion du Bronze d’aluminium

Le point de fusion du Bronze d’aluminium – UNS C95400 est d’environ 1030°C.

En général, la  fusion  est un  changement de phase  d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le  point de fusion  définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre.

Conductibilité thermique du Bronze d’aluminium

La conductibilité thermique du Bronze d’aluminium – UNS C95400 est de 59 W/(mK).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la  conductibilité thermique, k (ou λ), mesurée en  W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gaz), par conséquent, elle est également définie pour les liquides et les gaz.

La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Exemple: Calcul du transfert de chaleur

Bronze d'aluminium - Conductivité thermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une zone carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de  flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). Le mur a une épaisseur de 15 cm (L1) et est en bronze d’aluminium avec une conductivité thermique de k1 = 59 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur ) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de  conduction  et  de convection . Avec ces systèmes composites, il est souvent pratique de travailler avec un  coefficient de transfert de chaleur globalappelé  facteur  U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le  coefficient de transfert de chaleur global  est lié à la  résistance thermique totale  et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le  coefficient de transfert de chaleur global  peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global est alors: U = 1 / (1/10 + 0,15/59 + 1/30) = 7,36 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 7,36 [W/m2K] x 30 [K] = 220,79 W/m2

La perte totale de chaleur à travers ce mur sera de: qperte = q . A = 220,79 [W/m2] x 30 [m2] = 6623,701 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique

Acier inoxydable austénitique – Densité – Résistance – Dureté – Point de fusion

À propos de l’acier inoxydable austénitique – Type 304

L’acier inoxydable de type 304 (contenant 18 % à 20 % de chrome et 8 % à 10,5 % de nickel) est l’acier inoxydable le plus courant. Il est également appelé acier inoxydable « 18/8 » en raison de sa composition qui comprend 18 % de chrome et 8 % de nickel. Cet alliage résiste à la plupart des types de corrosion. C’est un acier inoxydable austénitique et il possède également d’excellentes propriétés cryogéniques, une bonne résistance à haute température ainsi que de bonnes propriétés de formage et de soudage. Il est moins conducteur électriquement et thermiquement que l’acier au carbone et est essentiellement non magnétique.

L’acier inoxydable de type 304L, largement utilisé dans l’industrie nucléaire, est une version à très faible teneur en carbone de l’alliage d’acier 304. Cette nuance a des propriétés mécaniques légèrement inférieures à la nuance standard 304, mais reste largement utilisée grâce à sa polyvalence. La faible teneur en carbone du 304L minimise les précipitations de carbure délétères ou nocives résultant du soudage. Le 304L peut donc être utilisé « tel que soudé » dans des environnements à corrosion sévère, et il élimine le besoin de recuit. Le grade 304 a également une bonne résistance à l’oxydation en service intermittent jusqu’à 870 °C et en service continu jusqu’à 925 °C.

Le corps de la cuve du réacteur est construit en acier au carbone faiblement allié de haute qualité et toutes les surfaces qui entrent en contact avec le fluide de refroidissement du réacteur sont revêtues d’un minimum d’environ 3 à 10 mm d’ acier inoxydable austénitique afin de minimiser la corrosion. Étant donné que la nuance 304L ne nécessite pas de recuit après soudage, elle est largement utilisée dans les composants de gros calibre.

acier austénitique propriétés densité résistance prix

Résumé

Nom Acier inoxydable austénitique
Phase à STP solide
Densité 7850kg/m3
Résistance à la traction ultime 515 MPa
Limite d’élasticité 205 MPa
Module de Young 193 GPa
Dureté Brinell 201 BHN
Point de fusion 1450°C
Conductibilité thermique 20W/mK
Capacité thermique 500 J/g·K
Prix 2 $/kg

Densité de l’acier inoxydable austénitique

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité  est définie comme la  masse par unité de volume. C’est une  propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume:  ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).

La densité de l’acier inoxydable austénitique est de 7850 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en acier inoxydable austénitique, qui pèse une tonne métrique.

Solution:

La densité  est définie comme la  masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 0,503 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques de l’acier inoxydable austénitique

Résistance de l’acier inoxydable austénitique

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.

La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la  loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module d’élasticité de Youngest le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime de l’acier inoxydable austénitique

La résistance à la traction ultime de l’acier inoxydable austénitique est de 280 MPa.

Limite d’élasticité de l’acier inoxydable austénitique

La limite d’élasticité de l’acier inoxydable austénitique  est de 145 MPa.

Module de Young de l’acier inoxydable austénitique

Le module de Young de l’acier inoxydable austénitique est de 45 GPa.

Dureté de l’acier inoxydable austénitique

En science des matériaux, la  dureté  est la capacité à résister à  l’indentation de surface  (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un  pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

L’ indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation:

indice de dureté Brinell - définition

La dureté Brinell de l’acier inoxydable austénitique est d’environ 70 BHN (converti).

Voir aussi: Dureté des matériaux

Exemple: Force

Supposons une tige en plastique, qui est faite d’acier inoxydable austénitique. Cette tige en plastique a une section transversale de 1 cm 2 . Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit : UTS = 280 MPa.

Solution:

La contrainte (σ) peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 280 x 10 6 x 0,0001 = 28 000 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques de l’acier inoxydable austénitique

Acier inoxydable austénitique – Point de fusion

Le point de fusion de l’acier inoxydable austénitique est de 550 à 640 °C.

Notez que ces points sont associés à la pression atmosphérique standard. En général, la  fusion est un changement de phase d’une substance de la phase solide à la phase liquide. Le  point de fusion  d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.

Acier inoxydable austénitique – Conductivité thermique

La conductibilité thermique de l’acier inoxydable austénitique est de 116 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductibilité thermique, k (ou λ), mesurée en  W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par  conduction. Notez que  la loi de Fourier  s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

La conductibilité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire  k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Acier inoxydable austénitique – Chaleur spécifique

La chaleur spécifique de l’acier inoxydable austénitique est de 900  J/g K.

La chaleur spécifique, ou capacité thermique spécifique, est une propriété liée à l’énergie interne  très importante en thermodynamique. Les  propriétés intensives cv et cp sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’  énergie interne  u(T, v)  et de  l’ enthalpie  h(T, p), respectivement: 

où les indices  v et p désignent les variables maintenues fixes lors de la différenciation. Les propriétés cv et cp sont appelées chaleurs spécifiques  (ou  capacités calorifiques ) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont  J/kg K  ou  J/mol K.

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique