Facebook Instagram Youtube Twitter

Cire – Densité – Résistance – Point de fusion – Conductivité thermique

À propos de la cire

En général, les cires sont une classe diversifiée de composés organiques qui sont des solides lipophiles et malléables près des températures ambiantes. Ils comprennent des alcanes supérieurs et des lipides, généralement avec des points de fusion supérieurs à environ 40°C (104°F), fondant pour donner des liquides à faible viscosité. Bien que de nombreuses cires naturelles contiennent des esters, les cires de paraffine sont des hydrocarbures, des mélanges d’alcanes généralement dans une série homologue de longueurs de chaîne. Ces matériaux représentent une fraction importante du pétrole.

propriétés de la cire densité résistance prix

Résumé

Nom La cire
Phase à STP solide
Densité 960kg/m3
Résistance à la traction ultime 0,9 MPa
Limite d’élasticité N / A
Module de Young 0,2 GPa
Dureté Brinell N / A
Point de fusion 57 °C
Conductivité thermique 0,2 W/mK
Capacité thermique 2200 J/g·K
Prix 1,5 $/kg

Densité de cire

Les densités typiques de diverses substances sont à la pression atmosphérique. La densité est définie comme la masse par unité de volume. C’est une propriété intensive, qui est définie mathématiquement comme la masse divisée par le volume: ρ = m/V

En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).

La densité de la cire est de 960 kg/m3.

Exemple: Densité

Calculez la hauteur d’un cube en cire, qui pèse une tonne métrique.

Solution:

La densité  est définie comme la masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V

Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:

densité du matériau - équation

La hauteur de ce cube est alors a = 1,014 m.

Densité des matériaux

Tableau des matériaux - Densité des matériaux

Propriétés mécaniques de la cire

Force de la cire

En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. Lors de la conception de structures et de machines, il est important de tenir compte de ces facteurs, afin que le matériau sélectionné ait une résistance suffisante pour résister aux charges ou forces appliquées et conserver sa forme d’origine.

La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique. Pour la contrainte de traction, la capacité d’un matériau ou d’une structure à supporter des charges tendant à s’allonger est appelée résistance ultime à la traction (UTS). La limite d’élasticité ou la limite d’élasticité est la propriété du matériau définie comme la contrainte à laquelle un matériau commence à se déformer plastiquement, tandis que la limite d’élasticité est le point où la déformation non linéaire (élastique + plastique) commence. En cas de contrainte de traction d’une barre uniforme (courbe contrainte-déformation), la loi de Hooke décrit le comportement d’une barre dans la région élastique. Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction.

Voir aussi: Résistance des matériaux

Résistance à la traction ultime de la cire

La résistance à la traction ultime de la cire est de 0,9 MPa.

Limite d’élasticité de la cire

La limite d’élasticité de la cire  est N/A.

Module de Young de la cire

Le module de Young de Wax est de 0,2 GPa.

Dureté de la cire

En science des matériaux, la dureté est la capacité à résister à  l’indentation de surface (déformation plastique localisée) et  aux rayuresLe test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester.

L’ indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation:

indice de dureté Brinell - définition

La dureté Brinell de la cire est d’environ N/A.

Voir aussi: Dureté des matériaux

Exemple: Force

Supposons une tige en plastique, qui est faite de cire. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 0,9 MPa.

Solution:

La contrainte (σ) peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:

résistance du matériau - équation

par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:

F = UTS x A = 0,9 x 106 x 0,0001 = 90 N

La résistance des matériaux

Tableau des matériaux - Résistance des matériaux

Élasticité des matériaux

Tableau des matériaux - Élasticité des matériaux

Dureté des matériaux

Tableau des matériaux - Dureté des matériaux 

Propriétés thermiques de la cire

Cire – Point de fusion

Le point de fusion de la cire est de 57 °C.

Notez que ces points sont associés à la pression atmosphérique standard. En général, la fusion est un changement de phase d’une substance de la phase solide à la phase liquide. Le point de fusion d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre. Pour divers composés chimiques et alliages, il est difficile de définir le point de fusion, car il s’agit généralement d’un mélange de divers éléments chimiques.

Cire – Conductivité Thermique

La conductivité thermique de Wax est de 0,2 W/(m·K).

Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en  W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.

La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:

conductivité thermique - définition

La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire k = k (T). Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.

Fart – Chaleur Spécifique

La chaleur spécifique de la cire est de 2200  J/g K .

La chaleur spécifique, ou capacité thermique spécifique, est une propriété liée à l’énergie interne  très importante en thermodynamique. Les  propriétés intensives cv et cp sont définies pour des substances compressibles pures et simples comme des dérivées partielles de l’ énergie interne u(T, v) et de  l’ enthalpie h(T, p), respectivement: 

où les indices v et p désignent les variables maintenues fixes lors de la différenciation. Les propriétés cv et cp sont appelées chaleurs spécifiques (ou capacités calorifiques) car, dans certaines conditions particulières, elles relient le changement de température d’un système à la quantité d’énergie ajoutée par transfert de chaleur. Leurs unités SI sont J/kg K ou J/mol K.

Exemple: Calcul du transfert de chaleur

Cire - Conductivité ThermiqueLa conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une surface carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.

Calculer le taux de flux de chaleur à  travers un mur de 3 mx 10 m de surface (A = 30 m2). Le mur a une épaisseur de 15 cm (L1) et il est fait de cire avec une conductivité thermique  de k1 = 0,2 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure  sont de 22°C et -8°C, et que les  coefficients de transfert de chaleur par convection  sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).

Calculez le flux de chaleur (perte de chaleur) à travers ce mur.

Solution:

Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de conduction et de convection. Avec ces systèmes composites, il est souvent pratique de travailler avec un coefficient de transfert de chaleur globalappelé facteur U. Le facteur U est défini par une expression analogue à  la loi de refroidissement de Newton:

Calcul du transfert de chaleur - Loi de refroidissement de Newton

Le coefficient de transfert de chaleur global est lié à la résistance thermique totale et dépend de la géométrie du problème.

En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le coefficient de transfert de chaleur global peut être calculé comme suit:

Calcul du transfert de chaleur - Facteur U

Le coefficient de transfert thermique global est alors: U = 1 / (1/10 + 0,15/0,2 + 1/30) = 1,13 W/m2K

Le flux de chaleur peut alors être calculé simplement comme suit: q = 1,13 [W/m2K] x 30 [K] = 33,96 W/m2

La perte totale de chaleur à travers ce mur sera de: qperte = q . A = 33,96 [W/m2] x 30 [m2] = 1018,87 W

Point de fusion des matériaux

Tableau des matériaux - Point de fusion

Conductivité thermique des matériaux

Tableau des matériaux - Conductivité thermique

Capacité calorifique des matériaux

Tableau des matériaux - Capacité calorifique