À propos de la fonte grise
La fonte grise est le type de fer le plus ancien et le plus répandu et c’est probablement ce à quoi la plupart des gens pensent lorsqu’ils entendent le terme «fonte». Les teneurs en carbone et en silicium des fontes grises varient entre 2,5 et 4,0 % en poids et 1,0 et 3,0 % en poids, respectivement.
La fonte grise se caractérise par sa microstructure graphitique qui donne aux ruptures du matériau un aspect gris. Cela est dû à la présence de graphite dans sa composition. Dans la fonte grise, le graphite se présente sous forme de flocons, prenant une géométrie tridimensionnelle.
La fonte grise a moins de résistance à la traction et aux chocs que l’acier, mais sa résistance à la compression est comparable à celle de l’acier à faible et moyenne teneur en carbone. La fonte grise a une bonne conductivité thermique et une capacité thermique spécifique, elle est donc souvent utilisée dans les ustensiles de cuisine et les disques de frein.
Résumé
Nom | Fer gris |
Phase à STP | solide |
Densité | 7150kg/m3 |
Résistance à la traction ultime | 395 MPa |
Limite d’élasticité | N / A |
Module de Young | 124 GPa |
Dureté Brinell | 235 BHN |
Point de fusion | 1260°C |
Conductivité thermique | 53W/mK |
Capacité thermique | 460 J/g·K |
Prix | 1,2 $/kg |
Densité de la fonte grise
En d’autres termes, la densité (ρ) d’une substance est la masse totale (m) de cette substance divisée par le volume total (V) occupé par cette substance. L’unité SI standard est le kilogramme par mètre cube (kg/m3). L’unité anglaise standard est la masse de livres par pied cube (lbm/ft3).
La densité de la fonte grise est de 7150 kg/m3.
Exemple: Densité
Calculez la hauteur d’un cube en fonte grise, qui pèse une tonne métrique.
Solution:
La densité est définie comme la masse par unité de volume. Il est mathématiquement défini comme la masse divisée par le volume: ρ = m/V
Comme le volume d’un cube est la troisième puissance de ses côtés (V = a3), la hauteur de ce cube peut être calculée:
La hauteur de ce cube est alors a = 0,519 m.
Densité des matériaux
Propriétés mécaniques de la fonte grise
Les matériaux sont fréquemment choisis pour diverses applications car ils présentent des combinaisons souhaitables de caractéristiques mécaniques. Pour les applications structurelles, les propriétés des matériaux sont cruciales et les ingénieurs doivent en tenir compte.
Force de la fonte grise
En mécanique des matériaux, la résistance d’un matériau est sa capacité à supporter une charge appliquée sans rupture ni déformation plastique. La résistance des matériaux considère essentiellement la relation entre les charges externes appliquées à un matériau et la déformation ou la modification des dimensions du matériau qui en résulte. La résistance d’un matériau est sa capacité à supporter cette charge appliquée sans défaillance ni déformation plastique.
Résistance à la traction ultime
La résistance à la traction ultime de la fonte grise (ASTM A48 classe 40) est de 295 MPa.
La résistance à la traction ultime est le maximum sur la courbe technique de contrainte-déformation. Cela correspond à la contrainte maximalequi peut être soutenu par une structure en tension. La résistance à la traction ultime est souvent abrégée en « résistance à la traction » ou même en « l’ultime ». Si cette contrainte est appliquée et maintenue, une fracture en résultera. Souvent, cette valeur est nettement supérieure à la limite d’élasticité (jusqu’à 50 à 60 % de plus que le rendement pour certains types de métaux). Lorsqu’un matériau ductile atteint sa résistance ultime, il subit une striction où la section transversale se réduit localement. La courbe contrainte-déformation ne contient pas de contrainte supérieure à la résistance ultime. Même si les déformations peuvent continuer à augmenter, la contrainte diminue généralement après que la résistance ultime a été atteinte. C’est une propriété intensive; sa valeur ne dépend donc pas de la taille de l’éprouvette. Cependant, cela dépend d’autres facteurs, tels que la préparation de l’échantillon,température de l’environnement et du matériau d’essai. Les résistances ultimes à la traction varient de 50 MPa pour un aluminium jusqu’à 3000 MPa pour les aciers à très haute résistance.
Module de Young
Le module de Young de la fonte grise (ASTM A48 classe 40) est de 124 GPa.
Le module de Young est le module d’élasticité pour les contraintes de traction et de compression dans le régime d’élasticité linéaire d’une déformation uniaxiale et est généralement évalué par des essais de traction. Jusqu’à une contrainte limite, une caisse pourra retrouver ses dimensions au retrait de la charge. Les contraintes appliquées font que les atomes d’un cristal se déplacent de leur position d’équilibre. Tous les atomes sont déplacés de la même quantité et conservent toujours leur géométrie relative. Lorsque les contraintes sont supprimées, tous les atomes reviennent à leur position d’origine et aucune déformation permanente ne se produit. Selon la loi de Hooke, la contrainte est proportionnelle à la déformation (dans la région élastique), et la pente est le module de Young. Le module de Young est égal à la contrainte longitudinale divisée par la déformation.
Dureté de la fonte grise – ASTM A48 Classe 40
La dureté Brinell de la fonte grise (ASTM A48 classe 40) est d’environ 235 MPa.
En science des matériaux, la dureté est la capacité à résister à l’indentation de surface (déformation plastique localisée) et aux rayures. La dureté est probablement la propriété matérielle la plus mal définie car elle peut indiquer une résistance aux rayures, une résistance à l’abrasion, une résistance à l’indentation ou encore une résistance à la mise en forme ou à la déformation plastique localisée. La dureté est importante d’un point de vue technique car la résistance à l’usure par frottement ou érosion par la vapeur, l’huile et l’eau augmente généralement avec la dureté.
Le test de dureté Brinell est l’un des tests de dureté par indentation, qui a été développé pour les tests de dureté. Dans les tests Brinell, un pénétrateur sphérique dur est forcé sous une charge spécifique dans la surface du métal à tester. Le test typique utilise une bille en acier trempé de 10 mm (0,39 in) de diamètre comme pénétrateur avec une force de 3 000 kgf (29,42 kN; 6 614 lbf). La charge est maintenue constante pendant un temps déterminé (entre 10 et 30 s). Pour les matériaux plus tendres, une force plus faible est utilisée; pour les matériaux plus durs, une bille en carbure de tungstène remplace la bille en acier.
Le test fournit des résultats numériques pour quantifier la dureté d’un matériau, qui est exprimée par le nombre de dureté Brinell – HB. Le nombre de dureté Brinell est désigné par les normes d’essai les plus couramment utilisées (ASTM E10-14[2] et ISO 6506–1:2005) comme HBW (H de la dureté, B de Brinell et W du matériau du pénétrateur, le tungstène (wolfram) carbure). Dans les anciennes normes, HB ou HBS étaient utilisés pour désigner les mesures effectuées avec des pénétrateurs en acier.
L’ indice de dureté Brinell (HB) est la charge divisée par la surface de l’indentation. Le diamètre de l’empreinte est mesuré avec un microscope à échelle superposée. Le nombre de dureté Brinell est calculé à partir de l’équation:
Il existe une variété de méthodes d’essai couramment utilisées (par exemple, Brinell, Knoop , Vickers et Rockwell). Il existe des tableaux qui sont disponibles corrélant les nombres de dureté des différentes méthodes d’essai où la corrélation est applicable. Dans toutes les échelles, un nombre élevé de dureté représente un métal dur.
Exemple: Force
Supposons une tige en plastique faite de fonte grise. Cette tige en plastique a une section transversale de 1 cm2. Calculez la force de traction nécessaire pour atteindre la résistance ultime à la traction de ce matériau, soit: UTS = 295 MPa.
Solution:
La contrainte (σ) peut être assimilée à la charge par unité de surface ou à la force (F) appliquée par section transversale (A) perpendiculaire à la force comme suit:
par conséquent, la force de traction nécessaire pour atteindre la résistance à la traction ultime est:
F = UTS x A = 295 x 106 x 0,0001 = 29 500 N
Propriétés thermiques de la fonte grise
Les propriétés thermiques des matériaux font référence à la réponse des matériaux aux changements de leur thermodynamics/thermodynamic-properties/what-is-temperature-physics/ »>température et à l’application de chaleur. Lorsqu’un solide absorbe de thermodynamics/what-is-energy-physics/ »>l’énergie sous forme de chaleur, sa température augmente et ses dimensions augmentent. Mais différents matériaux réagissent différemment à l’application de chaleur.
La capacité calorifique, la dilatation thermique et la conductivité thermique sont des propriétés qui sont souvent critiques dans l’utilisation pratique des solides.
Point de fusion de la fonte grise grise
Le point de fusion de la fonte grise est d’environ 1260°C.
En général, la fusion est un changement de phase d’une substance de la phase solide à la phase liquide. Le point de fusion d’une substance est la température à laquelle ce changement de phase se produit. Le point de fusion définit également une condition dans laquelle le solide et le liquide peuvent exister en équilibre.
Conductivité thermique de la fonte grise
La conductivité thermique de la fonte grise est de 53 W/(mK).
Les caractéristiques de transfert de chaleur d’un matériau solide sont mesurées par une propriété appelée la conductivité thermique, k (ou λ), mesurée en W/mK. C’est une mesure de la capacité d’une substance à transférer de la chaleur à travers un matériau par conduction. Notez que la loi de Fourier s’applique à toute matière, quel que soit son état (solide, liquide ou gazeux), par conséquent, elle est également définie pour les liquides et les gaz.
La conductivité thermique de la plupart des liquides et des solides varie avec la température. Pour les vapeurs, cela dépend aussi de la pression. En général:
La plupart des matériaux sont presque homogènes, nous pouvons donc généralement écrire k = k (T) . Des définitions similaires sont associées aux conductivités thermiques dans les directions y et z (ky, kz), mais pour un matériau isotrope, la conductivité thermique est indépendante de la direction de transfert, kx = ky = kz = k.
Exemple: Calcul du transfert de chaleur
La conductivité thermique est définie comme la quantité de chaleur (en watts) transférée à travers une surface carrée de matériau d’une épaisseur donnée (en mètres) en raison d’une différence de température. Plus la conductivité thermique du matériau est faible, plus la capacité du matériau à résister au transfert de chaleur est grande.
Calculer le taux de flux de chaleur à travers un mur de 3 mx 10 m de surface (A = 30 m2). Le mur a une épaisseur de 15 cm (L1) et est en fonte grise avec une conductivité thermique de k1 = 53 W/mK (mauvais isolant thermique). Supposons que les températures intérieure et extérieure sont de 22°C et -8°C, et que les coefficients de transfert de chaleur par convection sur les côtés intérieur et extérieur sont h1 = 10 W/m2K et h2 = 30 W/m2K, respectivement. A noter que ces coefficients de convection dépendent fortement notamment des conditions ambiantes et intérieures (vent, humidité, etc.).
Calculez le flux de chaleur (perte de chaleur) à travers ce mur.
Solution:
Comme cela a été écrit, de nombreux processus de transfert de chaleur impliquent des systèmes composites et impliquent même une combinaison de conduction et de convection. Avec ces systèmes composites, il est souvent pratique de travailler avec un coefficient de transfert de chaleur global, appelé facteur U. Le facteur U est défini par une expression analogue à la loi de refroidissement de Newton:
Le coefficient de transfert de chaleur global est lié à la résistance thermique totale et dépend de la géométrie du problème.
En supposant un transfert de chaleur unidimensionnel à travers la paroi plane et sans tenir compte du rayonnement, le coefficient de transfert de chaleur global peut être calculé comme suit:
Le coefficient de transfert thermique global est alors: U = 1 / (1/10 + 0,15/53 + 1/30) = 7,34 W/m2K
Le flux de chaleur peut alors être calculé simplement comme suit: q = 7,34 [W/m2K] x 30 [K] = 220,32 W/m2
La perte totale de chaleur à travers ce mur sera de: qperte = q . A = 220,32 [W/m2] x 30 [m2] = 6609,7 W
Nous espérons que cet article, Fonte Grise – Fonte Grise, vous aidera. Si oui, donnez-nous un like dans la barre latérale. L’objectif principal de ce site Web est d’aider le public à apprendre des informations intéressantes et importantes sur les matériaux et leurs propriétés.